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Nonequilibrium critical dynamics of the relaxational models C and D
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We investigate the critical dynamics of thecomponent relaxational models C and D, which incorporate the
coupling of a nonconserved and conserved order pararBetespectively, to the conserved energy dengity
under nonequilibrium conditions by means of the dynamical renormalization group. Detailed balance viola-
tions can be implemented isotropically by allowing for different effective temperatures for the heat baths
coupling to the slow modes. In the case of model D with conserved order parameter, the energy density
fluctuations can be integrated out, leaving no trace of the nonequilibrium perturbations in the asymptotic
regime. For model C with scalar order parameter, in equilibrium governed by strong dynamic sealing (
=z,), we find no genuine nonequilibrium fixed point either. The nonequilibrium critical dynamics of model C
with n=1 thus follows the behavior of other systems with nonconserved order parameter wherein detailed
balance becomes effectively restored at the phase transitiom=Fr the energy density generally decouples
from the order parameter. However, for=2 andn=3, in the weak dynamic scaling regimesE&z,) entire
lines of genuine nonequilibrium model C fixed points emerge to one-loop order, which are characterized by
continuously varying static and dynamic critical exponents. Similarly, the nonequilibrium model C with spa-
tially anisotropic noise and<4 allows for continuously varying exponents, yet with strong dynamic scaling.
Subjecting model D to anisotropic nonequilibrium perturbations leads to genuinely different critical behavior
with softening only in subsectors of momentum space and correspondingly anisotropic scaling exponents.
Similar to the two-temperature model(Bandomly driven diffusive systemshe effective theory at criticality
can be cast into an equilibrium model D dynamics, albeit incorporating long-range interactions of the uniaxial
dipolar or ferroelastic type.
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I. INTRODUCTION consequence, the system’s static behavior can be separated
from its dynamic properties.

Analytical studies of dynamic critical phenomena in the In isotropic systems, there are normally two independent
vicinity of a second-order phase transition usually rely on astatic critical exponents, e.gv, and », which, respectively,
coupled set of Langevin-type stochastic equations of motiorharacterize the divergence of the correlation length upon
for the relevant slow variables, namely, the order parametesipproaching the transitiod~|7| =%, wherer<T—T,, and
and hydrodynamic modes associated with conservation lawgovern the power-law decay of the two-point correlation
[1]. Taking advantage of the separation of time scales infunction atT,, C(|x|)~|x| =27 in d spatial dimensions.
duced by critical slowing down, all remaining microscopic These become supplemented by dynamic exponemist
degrees of freedom are reduced to additive Gaussian whitgescribe the critical slowing down for the relevant modes,
noise terms in this description. In order to guarantee that thejith characteristic relaxation times diverging ®s-| 7| ~".
probability distribution for any configuration converges At thermal equilibrium, the dynamic universality classes are
to the canonical Gibbs function 7>eq(T)=Z(T)_l well understood, and known to be distinguished by overall
Xexp(—H/kgT) at long timest—o (with the effective features of the dynamical system at hand. In addition to the
Hamiltonian{ usually taken to be the standagd mode), order parameter symmetry, which essentially dictates the
the second moments of the stochastic forces must be relatatatic critical exponents, the determining factors are, if the
to the relaxation rates via Einstein relations. In addition, in-order parameter itself represents a conserved quantity or not,
tegrability conditions constrain the reversible force terms inthe absence or presence of additional conservation laws, and
the nonlinear Langevin equations quite severely, for the asthe form of the reversible mode couplings between the gen-
sociated probability currents in the space of the slow varieralized hydrodynamic variables, as again dictated by the
ables must be divergence fré2]. These two requirements symmetries of the probled].
also ensure the validity of the equilibrium fluctuation-  On the other hand, critical dynamics in systems far from
dissipation theorem, which relates the imaginary part of thehermal equilibrium is not subject to the stringent limitations
dynamic susceptibilities with the correlation functions. As aimposed by the detailed balance constraints, and in fact can-

not even always be adequately captured through coarse-

grained stochastic equations of moti¢8]. Nevertheless,
*Electronic address: akkineni@students.uiuc.edu several important situations have been successfully modeled
"Electronic address: tauber@vt.edu by means of the Langevin formalism, two prominent ex-
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amples being driven lIsing lattice gases, or more generahalization group(RG), utilizing a path integral or dynamic
driven diffusive system$4], and nonequilibrium interface field theory representation of the Langevin equafib4.
growth models, such as captured by the Kardar-Parisi-Zhang The equilibrium dynamical models C and(l» the termi-
(KPZ) equation and its variantsb]. Yet in nonequilibrium  nology of Ref.[1]) still describe purely relaxational dynam-
circumstances one has to invoke heuristic and/or phenonies for either a nonconservéthodel Q or conservedmodel
enological arguments for choosing the mathematical form oD) n-component order parameter fieg] which is however
the noise correlations. This must be done with appropriatstatically coupled to the conserved scalar energy dengity
care, however, since the structure of the stochastic forcdd5]. Preserving theD(n) order parameter symmetry, the
may crucially impact the universal scaling beha\i6}. Itis  lowest-order coupling iscpS?. As the energy density itself
thus of vital importance to elucidate the influence of differentrepresents a noncritical variable entering the Hamiltonian
forms of the assumed stochastic noise correlations on thgnly quadratically, it can be integrated out exactly in the
long-distance and long-time properties of any nonequilibpartition functionz(T) and the generating function for static
rium Langevin system under investigation. correlations. This merely shifts the value of the fourth-order
Naturally, then the following question arises for the coyplingu for the order parameter fluctuations, whence one
Langevin models describing the equilibrium dynamical uni-.o-qvers the static critical exponents of tBén) model.

versality classes: What happens to their universal scaling be- The coupling to the scalar diffusive mogemay, how-

?hi:f['osrir:];;h“esti%?flefobg:zggecgggglt'ggs d:;i&"?éztigdm'\lt%t:ever, alter thedynamiccritical behavior. To one-loop order,
7 proper b ; three distinct scaling regimes emerge for model C with non-
dynamics in nonequilibrium steady states, this may include

novel static critical behavior as well in addition to perhapsconserved order' paramet'er, depending on the co.mponent
modified values for the dynamic exponentsThe simplest ?umbef,n [15._1?: (8) for Ising symmetry 4=1), one finds
dynamical model just entails a purely relaxational kinetics SUONg” scaling, i.e.,zs=z,=2+ a/v, wherea denotes the
for a nonconserved order parameter with no coupling to>P€cific heat critical exponenth) the interval 2<n<4, for
other conserved quantities. This defines model A in(dle which >0, is characterized by “weak” scaling witlzs
phabetical classification of Ref[1]. Yet the model A univer- = 2(1+a/nv)<z,=2+alv; (c) for n=4, wherea<0, the
sality class, such as, for example, realized in the kinetic |sian!ra”98V'” equations for th& and p effectively decouple,
model with Glauber spin flip dynamics, is known to be ex- eaving purely diffusive behawo_r for. .the conserved mode,
tremely robust against nonequilibrium perturbatidsg]. 2= 2 and the model A dynamic critical exponent for the
For the kinetic Ising model, this remains true even when therder parameter,zs=2+cn, with c=6In5—-1+0(e=4
order parameter up-down symmetry is brok8h Consider  —d). To higher orders in perturbation theory, these three re-
the most straightforward situation where the order parametegimes essentially persigyet there appear additional distinc-
symmetry remains preserved, but the Einstein relation is ndions with respect to the corrections to the leading scaling
satisfied. Since there is only a single stochastic equation daws), but their boundaries become functions of the spatial
motion in this case, one can recover detailed balance througtimensiond as well as ofn [16,17]. For model D with con-
simple parameter rescaling which does not affect universaderved order parameter, the energy density always fluctuates
properties at the phase transitift0]. faster in the critical region, rendering a strong-scaling regime
Remarkably, the situation is markedly different for the impossible. The order parameter dynamics is thus not af-
purely diffusive relaxational critical dynamics of model B fected by the additional conservation law, and given by the
with conservedrder parametefe.g., the kinetic Ising model model B dynamic critical exponeat=4— 7. For «>0, one
with Kawasaki spin exchange procesgsésit only when sub-  finds againz,=2+ a/v, whereasz,=2 in the decoupled
ject to spatiallyanisotropic noise, say with stronger noise case wherm<0 [15].
correlations in the thus defined longitudinal as compared to In this paper, we explore the effect of perturbations in the
the complementary transverse sector in momentum space. ftochastic force correlators that violate the equilibrium con-
this effectivetwo-temperatureor randomly driven model B ditions on the critical dynamics of the relaxational models C
excitations in the transverse sector soften first, while the lonand D. Specifically, we shall retain ti@(n) order parameter
gitudinal directions remain noncritichl1—-13. This induces symmetry, but introduce different noise correlation strengths
inherent anisotropic scaling at the critical point, of the saméor the critical fluctuations and the conserved energy density,
form as those in driven lattice gasp$]. Interestingly, the respectively, amounting to unequal effective heat bath tem-
emerging long-wavelength dynamics in the critical regimeperaturesTs and T,. We shall employ the dynamic RG to
can be recast into an equilibrium model B, albeit with anone-loop order, and search for novel nonequilibrium fixed
effective Hamiltonian that incorporates long-range interacpoints of the ensuing RG flow equations. In addition, we will
tions of the uniaxial dipolar or ferroelastic type. These re-investigate spatially anisotropic detailed balance violations.
duce both the lower critical dimension, allowing long-range  The critical dynamics at structural phase transitions and of
order already in one dimension, as well as the upper criticahnisotropic antiferromagnets are usually listed as possible
dimension tod.=4—d, whered; denotes the dimension of realizations of the model C universality cld4d. In the latter
the stiff longitudinal sectof11,12. In Ref.[13], the associ- case, the nonequilibrium system studied in this paper might
atedfour independent critical exponents,( 7, z, and the be accessible experimentally if the effective temperature of
anisotropy exponenk) were computed to two-loop order in the conserved magnetization compori@ntcan be main-
the e expansion é=d.—d) by means of the dynamic renor- tained at a value different from that of the staggered magne-
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tization which constitutes the nonconserved order parametestatic critical properties is th®(n)-symmetric¢* Landau-

perhaps through constant exposure to electromagnetic radi&inzburg-Wilson free energy il space dimensions, with

tion. additional terms for the noncritical conserved field and its
This work supplements earlier research that focused onoupling to the order parameter. Preserving @@) rota-

nonequilibrium perturbations for dynamic universality tional invariance requires the lowest-order couplingotto

classes, which are characterized by reversible mode coudpe quadratic irS. For models C and D, the Hamiltonian thus

plings, as relevant for second-order phase transitions in mageads

netic system$10] (models E, G, and J, respectively, for the

critical dynamics in planar ferromagnets, isotropic antiferro- "l 1 u

magnets, and Heisenberg ferromagheis well as in fluids H[S,P]Zf ddx[ Z {ESQ(X)ZJF z[VS'“(X)]2+ Tl

[18] (model H for the liquid-gas transition critical point, or «t '

more generally in binary fluids, and model E for the normal- n g 1
to-superfluid phase transitionReference[19] provides a X > S*(X)2SP(x)2+ = p(X)S*(x)2 +—p(x)2].
concise summary of the results of these investigati@ms p=1 z 2
cluding a subset of this present wark (2.1

We finally remark that a recent study has addressed a
nonlocalgeneralization of the equilibrium relaxational mod- Herer =(T—Tg)/T¢ denotes the relative distance from the
els that allows interpolating between the scaling laws ofmean-field critical temperatufE, and we have rescaled the
models A, B, and ¢20]. Intriguingly, also a “true model D" static energy density correlation function, i.e., essentially the
scaling regime emerges in this situation, where both the conspecific heat to unityu and g represent the nonlinear inter-
servation laws for the order parameter and the energy densibtction strengths. The HamiltonigB.1) determines the equi-

remain relevant in the RG sense. librium probability distribution for the field$S®} and p,
This article is organized as follows. We start with a deri-

vation of the Langevin equations of motion from the effec- exp —H[S,p]/kgT)

tive Hamiltonian for models C and D, and then provide a Ped Sip1= (2.2

brief outline of the construction of field theory and the per- f DISID plexp(—H[S,p]/kgT)

turbation expansion based on the dynamic actitine

Janssen—De Dominicis functiongl4]). Prior to describing  ang furthermore provides the starting point for the field-
the results of the explicit perturbation expansion, the effecl,oretic static renormalization group via a series expansion
of the static nonlinear coupling of the order parameter to the, ihe nonlinear couplings andg, which allows for a sys-
conserved energy density is gauged by integrating the cofgmatic computation of the two independent static critical
served field out of the dynamic action. The implications Ofexponentsn and v in powers ofe=4—d. Note that the
this, namely, the reduction of the isotropic nonequmbrlumenergy density fluctuations enter the Hamiltonian(2.1)

model D to its equilibrium counterpart is discussed. Subsegny jinearly and quadratically, and can thus be readily inte-
quently, the full renormalllzatlon. of the vertex funcno_(ruxal— grated out. This merely results in a shift of the nonlinear
culated to one-loop ordefs detailed and the expressions for coupling u—U=u—3g?. Provided the latter remains posi-

the resulting renormalization constants are presented. FroMe. this does not affect the RG fixed point, whence the

theseZ factors we obtain the RG flow equations, and thereiase critical exponents are clearly those of the standard

from calculate the static and dynamic critical exponents ﬁrsb(n)-symmetric #* model

n eqwhbnum, a_nd then succ_esswely allowing for isotropic We now impose Langevin dynamics on the fluctuations of
violation of detailed balance in both models D gnd C..'Zhe the order parameter and the conserved field to describe the
factors are then adapted for the case of dynamical anisotrogy,|,ation of the system to equilibriufat which the station-

ilg mﬁdefl ICIZ; its fixed Ipoint arlld crgi]catl be?avior istexplaingdl. arity conditionssH[ S,p]/ 8S*=0 and s H[S,p)/5p=0 hold).
Bmfly’tr? ow!ngtear)erwor O'Fb 1€ two- g”;pDeTa ure mtq ? The purely relaxational model C/D dynamics is then given
[11], the anisotropic nonequilibrium model D is recast in Opy the equations of motion

an effective two-temperature model D with anisotropic scal-
ing properties. We conclude with a brief summary, putting 45 (x.1) SHIS.p]
our results into context with earlier investigations. An appen- —— =\ V)a—’p +2Y(x,1), 2.3
dix lists the explicit expressions for the one-loop vertex func- ot 6S*(x,t)
tions.

dp(x,t) , OH[S,p]

+ 7(x,1). (2.9
Il. THE RELAXATIONAL MODELS C AND D ot op(x,t)

In this section, we outline the basic model equations forHere\ andD denote the relaxation coefficients of the order
the nonequilibrium generalization of the relaxational modelsparameter and energy density, respectiely., D is essen-
C and D. As introduced in Ref15], these models are char- tially the heat conductivity The distinction between models
acterized by an-component vector order paramet& C and D is the value of the exponemtFor model Ca=0
={S"}, =1, ... n, coupled to a scalar conserved figld corresponding to anonconservedorder parameter field,
The effective Hamiltonian that describes their equilibriumwhile for model D,a=2, representing the diffusive relax-
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ation of aconservedorder parameter. With the effective parameter and the conserved energy density. The one-loop
Hamiltonian(2.1), the equations of motion take the specific RG flow equations for this case wotropic detailed balance

form violation are derived in Sec. Ill. The assumed functional
form for the noise correlations, Eq§2.7) and (2.8), also
IS (x,t) NV (r—V2)S9(x 1) enables us to imposespatially anisotropicform of detailed
at ' balance violation, as described in Sec. IV.

We close this general introduction with a brief outline of
how a field theory representation can be constructed from

u
_Q 2 @
* 6S (X’t)% St +gp(xHS(x.1) general Langevin-type equations of the form

+24(X,1), (2.5 AP*(x,t)
TzK“[{wa}](x,t)Jrg“(x,t) (2.10
Ip(x,t) g
=DV p(x,t)+ = 2, SUX )%+ n(x,t). _ _ :
at p(x.b) 2 % ()7 +7(x.1) with (£%)=0, and the general noise correlations
(2.6
(¥ (X, 0) LX)y =2L*8(x—x") 8(t—t") 6%F.
Upon reinstating the specific heat, note that the linear part in (2.11
Eq. (2.6) implies t; *~D|7|%q?. Invoking dynamic scaling
then suggests.~|7]"2""¢, i.e., z,=2+alv for the dy- This form of the white noise may be inferred from a

namic exponent of the energy density. We shall see that thiaussian distribution for the stochastic forces
relation in fact holds only fon<<4, or more precisely, when
gri>ti<(:)éliftor otherwise the two Langevin equations decouple at W[{g“}]ocexp{ _ }f ddxf dtz g“(L“)lga}.
y. 4 p

In the above stochastic equations of moti¢gh5) and 2.12
(2.6), {* and  represent the stochastic fordemise for the
order parameter and the conserved field, respectively. We Eliminating {* via Eq.(2.10 immediately yields the de-
assume a Gaussian distribution for these fast variables withgired probability distribution for the fieldg*,
vanishing temporal averag€/“)=0=(7). Their second

moments then take the functional form WI{ N DI{ N = P[{ DI} B D { )],
(2.13
(X, 1) LP(X 1))y =2X(iV)28(x—x") 8(t—1") 5P,
(@D ) ( ( ( 2.7 with the Onsager-Machlup functional
I3\ — _ 9P v?2 ! __t! 1 alpa
(n(x.H) (X' t')y=—2DV28(x—x")5(t—t"). (2.9 G[{‘/’a}]:_zf ddxj atS ( j _Ka[{wa}])
In thermal equilibrium, Einstein relations connect the re-
laxation coefficients with the corresponding noise strengths (L#)~1 aP* KTy 21
according tox =\kgT and D =DkgT, whereT is the tem- S RUSIE (214

perature of the heat bath in contact with the system. The

detailed balance conditions implicit in these relations ensur&rom this functional, one can already construct a perturba-
that the system relaxes to the equilibrium probability distri-tion expansion for the correlation functions of the fieldt§
bution (2.2) in the limit t—<. More generally, we can iden- however, since the inverse of the Onsager coefficiehts

tify X/A=kgTs and 5/D=kBTp as the temperatures of the singular for the conservzed quantities, and furthermore high
heat baths coupling to the order parameter and the conservé@nlinearities<K“[{4}]* appear, it is convenient to intro-

transformation to partially linearize the above functional.
0 T, D2 . This leads to
TTDR 29

PLYY 1= | DL exs— AT 1)) (219
This new degree of freedof® describes the extent to which

the equilibrium condition is violated; detailed balance clearly, . L :
holds for®=1, while for ®<1 energy flows from the order with the Janssen-De Dominicis functioriak]
parameter heat bath to the conserved density heat bath, and

vice versa for®>1. Since we are interested in the behaviorA[{T/;“},{lpa}]:f ddxf dt

near the critical poinfTs~T., ® essentially measures the

temperature of the conserved density heat Bathin units - oy

of the critical temperatur&. . In the critical regime, we will X 2| =L e el Ka[{lﬂa}]) }
be interested in calculating the dynamic exponezgsand “

z,, which describe the critical slowing down for the order (2.1
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Equation(2.16) will provide the starting point for our discus- while the static nonlinearity leads to a relaxation vertex,
sion of the nonequilibrium dynamics of models C/D. In Sec.

[ll, we will use the corresponding Janssen—De Dominicis U

functional for the construction of dynamic perturbation AolS,S]= _f dix | dt> S(x,t)

theory, and therefrom infer the one-loop RG flow equations, 6 a.pB

first in equilibrium and then with broken detailed balance.
Subsequently in Sec. 1V, we will repeat the procedure for the
models with anisotropic detailed balance violation.

X[N(iV)3SB(x,1)?]S¥(x,t), (3.3

and the coupling between the order parameter and the con-
ll. THE ISOTROPIC NONEQUILIBRIUM served density generates the model C/D vertices
MODELS C AND D

In this section, we will study the nonequilibrium critical e~
properties of the relaxational models C and D with isotropic ACJS'S'p’p]:gf ddxf dt
violation of detailed balance. Along the way, we shall also
recover the equilibrium critical exponents. The field theory is « 2
constructed as outlined in the preceding Sec. I, and a per-
turbation series expansion in the relevant nonlinear couplings
«u andg? is developed for the one-particle irreducible ver- _~ 2& « 2

: . p(X,t)DV“=S%(x,t)

tex functions, explicitly here to one-loop order. The subse-
guent renormalization constitutes a straightforward generali-
zation of the equilibrium renormalization scheme, see Ref.
[16]. From the renormalization constan factor9 that ren-
der the field theory finite in the ultravioléUV), we derive
the RG flow functions which enter the Callan-Symanzik.
equation. This partial differential equation describes the be";1 Eq. (2.9, by mtegraﬂng out the conhservedl céenspttlrom
havior of the correlation functions under scale transformat e action. Denoting those terms in the total dynamic action
tions. In the vicinity of a RG fixed point, the theory becomes-ALS:S;,p] that involve only the order parameter and the
scale invariant and the information from the UV behaviorcorresponding auxiliary fields agl[S,S], and subtracting
can be employed to access the physically interesting powehis part, we are, in Fourier space, left with
laws governing the infraredR) regime at the critical point
(7«T—T.—0), for long wavelengthq—0) and at low fre-

S, )N (i V)2p(X,1) S*(x,t)

(3.9

Before we proceed to develop the perturbation expansion
based on the above dynamic functional, we can try to gauge
the relevance of the nonequilibrium parame#eras defined

quencies w—0). Alp.pl=A[S,Sp.p]— A[S S|
A. Dynamic field theory for models C and D —f ddq do Dg?
- Dy y =) Gmdl 27 p(—0,~ )| (-iw+Dg)

As a first step, we translate the Langevin equati¢hs)
and (2.6), with the noise correlation§2.7) and (2.8), to a -
dynamic field theory{14,16]. This results in a probability Xp(9,0)—Dg?p(q,w)+Dg? Sz(q )
distribution for the dynamic field$ and p:

= . - +p(0,0)Aq%g[S- S](—q,—w)], (3.5
P[S,p]“f D[{IS“}]I Dliplexp(—A[S,Sp.p]),
(3.)
where we have introduced the composite operators
with the statistical weight given by the Janssen—De Domini-

cis functional A= A+ Aret Acg- The harmonic part, in

terms of the original dynamic fieldS* and p, and the cor- ? _j d E - -
responding auxiliary field§* andp, reads (Q.0)= (24r)¢ 2w (P.1)SH(A=p,w=w),
(3.6
g S“(x t)
Aal855.01= | 0t [ df T S
dv ~
+A(IV)3(r—=V?)s(x,t) [S-Sl(g,0)= f (2m )d E; S*(p,v)S*(q—p,0—v)
(x t) 3.7
= N(iV)IS*(x, 1) | +B(x,1)

as Fourier convolutions.
) (3.2 The path integral over the fielgs and’p now takes the

—DV?2p(x,t) +DVZp(x,t) _ ! _
form, in matrix notation,
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. 5 terpart. This remarkable result will be borne out in the ex-
f D[lp]f Dlplexp(—Alp,p]) plicit one-loop perturbation theory as well, see Sec. Il D.

-TI D[ixl]D[xz]ex;{ _ EXTA . bTx) ’ B. Perturbation theory and renormalization
a0 1. Elements of dynamic perturbation theory
3.9 We first detail the dynamic field theory for the case of
isotropic detailed balance violation for both models C and D.

with the vectors The harmonic part3.2) defines thgbare propagators of the

(q,0) Dq’gS(q,w)/2 field theory, while the perturbation expansion is performed in
= , = g , (3.9 terms of the nonlinear verticé8.3) and(3.4). Note that the
p(q,0) AQg[S-S](q,w) existence of the irreversible forc€3.4) does not show up in

dynamic mean-field theorfvan Hove theoryat all, which is
based on the harmonic actig8.2) only.
We can now construct the perturbation expansion for all
=AT, (3.10 possible correlation functions of the dynamic and auxiliary
fields, to be computed with the statistical weight

exp(—A[S,Sp.p]), as well as for the associated vertex
functions given by the one-patrticle irreducible Feynman dia-
grams. A straightforward scaling analysis yields that the up-

1 per critical dimension of this model d.=4 for the relax-
exp(EbTA‘l b) ,

and the Hermitian matrix
-2 qu —iw+De?
io+Dg? 0

After the linear transformatioy=x+A"'b, the integral
(3.8) becomes

ational vertices(3.3) and (3.4). Therefore, ford<4 the
3.11) perturbation theory will be IR singular, and nontrivial critical
exponents will result, whereas fat=4 the perturbation
where the entries of the inverse matrix theory contains UV divergences. In order to renormalize the
field theory in the ultraviolet, it suffices to render all the
nonvanishing two-, three-, and four-point functions finite by
introducing multiplicative renormalization constariis ad-
(3.12 dition to an additive renormalization that amounts to a
fluctuation-induced shift of the critical temperaturéhis is
actually represent the propagators for the scalar conservéthieved by demanding the renormalized vertex functions, or
field p. Upon performing the Gaussian integration overyhe appropriate momentum and frequency derivatives thereof, to
fields, thep andp fields are integrated out to yield the effec- be finite when the fluctuation integrals are taken at a conve-
tive dynamic functional niently chosen normalization poini, well outside the IR
regime. Note thau defines an intrinsic momentum scale of
dg [ dw o the renormalized theory. The Callan-Symanzik equations can
)dJ’ 5N g[S SI(—q,—w)  subsequently be used to explore the dependence efitioe-

_ 1
f D[Iyl]D[yz]exp( —5Y'Ay

0 (io+Dg?) 1t

A l=| ~ -
L_,Mqu) 1 2Dq¥(w?+D2%g%

d

Al S, S]= A[S, 5]+ J

(2m malizedvertex functions oru, and thereby obtain informa-
S(qw)2 N D[S S)(q,0)/Dq? tion on the scaling behavior of the dynamic correlation and
— — ! . response functions.
1-iw/Dg?> D 1+(w/Dg?)? The Gaussiarizeroth-order propagators
3.1 _
(3.13 GRugs(0,®) =T Zues(— 0, — @) 4, (3.19
We now define the parameter o o )
G (qw)=I- (—-0,~w)" ", (3.1
w=D/\, (3.14 r ”

. . ) o and vertices which are the starting point for perturbation
which essentially measures the ratio of relaxation times ofheory are

the order parameter and the conserved field, ie.,

~rgl7,. For model D @=2) at criticality, the relaxation Fgasg(q,w):[iw—f—)\ q?(r+q?)]6%, (3.17
time of the conserved order parameter field is much longer
(since 9S*/ gt~q*) compared to that of the conserved field F9p(q,m)=iw+ Dq?, (3.189

(sincedpl at~q?), so thatw— = asq—0. Hence the second

term i.n the brack.et~s in the apove effective fu.nctiomlhich F%@;( q ) =2% 25, (3.19
contains the ratioD/D) vanishes asymptotically. Conse-

quently, the nonequilibrium paramet@rdisappears from the 0 =

effective field theory(3.13 entirely, and a simple rescaling I53(Q,0)=2D0’, (320
of the nonlinear couplingsi and g reduces model D with 0 a. sap

isotropic detailed balance violation to its equilibrium coun- I'Zagp, (0 @)=~ N 07g6"", (3.21
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TQSasg(q,w)=—%qug 5B, (3.22  plicative renormalizations, we shall have the freedom to
. choose, sayAg=MAg. As A=\ can be achieved through
0 u simple rescaling in the unrenormalized theory, this implies
Iaugagpgs(Q, ) = —Nqag- (323 the choice Z=Z, . In addition, the structure of the pertur-
bation series implies nontrivial additionalentitiesbetween
In addition to the previously introduced ratio of relaxation the renormalization constants, as we shall see below.

timesw and the nonequilibrium parametér, we define for We now proceed to compute the renormalization factors
convenience the rescaled static Coup”ngs by absorbing the UV divergences of the |00p integrals fol-
lowing the minimal subtraction prescription. All subsequent

by by explicit one-loop results are for the case of model & (
U=-u, §2=X92- (3.24  =0). However, as we have seen at the end of Sec. Ill A, the

separation of relaxation time scales for the order parameter

Recall that® is a measure of the extent to which detailed@nd the conserved density in model D leadsvte-= in the
balance is violated, since f@=1 a straightforward rescal- asymptotic limit. It turns out that taking this limit for the

ing of the couplings reduces the dynamic functiot@R)— merI C results preciselly yields tlefactors for model D.
(3.4) to the equilibrium case. An independent calculation of thé factors from the model
D vertex functions confirms the validity of this simple limit
2. Vertex function renormalization procedure.

. N " 1
The explicit expressions for the relevant vertex functions_ r'i'r?é’ 0\)'\;;3 Z%m;tl?%e ttr: Se f:rrlittlifglltyoi?nct)ldrltlongrsg’gznlve
to one-loop order in the perturbation expansion are given i?or t?]se f]uctuation—induced‘ Shift P ¢

the Appendix. The ultraviolet-divergent derivatives of the ¢ '
two-, three-, and four-point vertex functions that require

multiplicative  renormalization  are aqal“gs(q,O)lq:O,

922l 5(@0g-0,  A,I56(00)]0-0 g2 5(A0)lq-0, L PV
&wrf)p(07w)|w=01 é’anNSNS(q=O)|q=01 &qzrﬁﬁ q10)|q=0! 6 pre+ p2

9qal 35,(0,0)| g=o0. 942554 ,0)| g=o0, and

dqal'5s5€40,0)|4=0. The quadratic divergence in the first of 2 1—®J' 1 (331
these will be taken care of by thg shiftr,. The remainder Y 1w pre/(1+w)+p? '

as well as all the other expressions are logarithmically diver-
gent at the upper critical dimensiah=4. We thus require

ten multiplicative renormalizations in all, which we take to \ye may then reparametridésg(0,0) in terms ofr=r—r.,
define the renormalized counterparts of the fie®isS p,  which amounts to an additive renormalization,

and p, and of the paramete®, D, A, \, U, g, and 7=r

—r., which represents the temperature distance from the

true critical temperature. The renormalized quantities are de- I'e(0.0) 1 n+2 (T3
fined through 5s(0,0=A7 1———(U—37 f YN
g 6 p p*(7+p?)
o @ Sa_ 5126,
SR=Zé/ZS , SR_Z'é S, (3.25 ~2 1-0 J« 1
_g .
pr=2, Tr=Z%, (3.26 (1+w)? Jp pLr/(1+w)+p?]
~ ~ (3.32
TR:ZTTIU’_Zi )\R:Z)\)\! )\R:ZX)\! (BZD
Dr=ZpD, Dr=273D, (3.29  Writing this result in terms of renormalized quantities, and
evaluating the integrals at the normalization paist u? in
Ug=Z,u Aq ™€, gﬁnggz Agp” €, (3.29  dimensional regularization, we obtain the following expres-
sion for the product of th& factors
where in standard notation
I'(3—d/2) n+2 1-0 |Agu™
—a_ — ~7 \1/2 —1_ = w2y | =2
e=4—d, and Ay4= PR (830 (zgz9'z\z,=1 6 (t—399+7 Trw?| e
(3.33

The loop integrals are evaluated in the dimensional regular-

ization scheme, and we choose the renormalized mass

=1 as our normalization poirit.e., 7= ,LLZZ;1~,LL2, tolow-  Next, expanding the integrands in the expression for
est orde). Note that as we have thus defined 11 renormalizal'zs(q, ) to orderg? to obtain the renormalization factor for
tion constants Z factorg, but actually only need 10 multi- the relaxation rate., we find

036113-7
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L Pes(@0)go=A|1- ®f !
g =Pl 4 14w /o [7/(1+w)+p?)2

g_(l 0)(1-w)?
d  (1+w)?

p2
X | ——, 3.3
fp[T/(1+W)+p2]3] (3-39
whence
§*1-0 (1-w)?|Agu™
~7 \1/2 _2 _
(2825) 72, =1 4 1+w (1+w)?| €
(3.39
Another product oZ factors is obtained from
i I'z5(0 =1
o) 5s(0,0)|y=0=
Ak I !
1+wW Jp (7+p?)[7/(1+wW)+p?]
., 1-0 f 1
g (L+w)2J)p[ 7/ (1+w) +p?]?’
(3.36
which gives
=2 —€
g 1-0|Agu
~ 1/2__ _
(229 =1+ 511 - 1w (339

Now consider the two-point vertex functidy,(q,w) for

the conserved density. Because any loop diagram for this

guantity necessarily involves @SS vertex for its outgoing
leg, we see that taking— 0 results inl';,(0,0)=iw to all
orders in the perturbation expansion. As a consequence

Z;Z,=1. (3.38
Upon absorbing the logarithmic divergence of
I';,(9,00=Dq? 1— f 2)2+O(q4)
(3.39
into Zp, we arrive at
n_,Aqu
1 _=2_ 4
Zp=1 5 P (3.40

The vertex functionl';;(q, @) is actually UV finite to all
orders. Again from the momentum dependence of dB&

vertex, dq2l'(0,0)| - 0= — 2D, whence
Z;Z5=1, (3.41

and with Eq.(3.38 therefore

PHYSICAL REVIEW E69, 036113 (2004
Zp=2,. (342

The remaining logarithmically divergent two-point function

~ 1
I'g(0,0=—2\|1+G? f
=00 Y T Wla(r ) (1w 7]
(3.43
yields the relation
0 Agu°
ZZ5=1+5%—— T < (3.449

At last, from the rather lengthy one-loop results5)—
(A7) for the three- and four-point vertex functions we de-
duce, respectively,

2 Ad,LL € 1_ Ad,u75
1/2 ~2| 1 _
(3.45
n+2~Ad/.L €
(Z8Z2,24) %2\ =1~ — U
"gZ 1_ 1_® Ad/.l,
(1+w)?] € '
(3.46
n+8_ Agu €
(2829 22,2,= 1~ o
+ 632 1_(1—@)(2+W) Agp” €
2(1+w)? €
69* 1-O]Au €
o M Tw (3.49

Upon factoring from the abovg factor products3.33),
(3.39, (3.37, (3.40, and (3.45—(3.47), the following re-
sults are obtained:

. n+2_Agu ¢ _,[n+2 1-0 |[Agp” €
T 6 € 2 (1+w)3| €
(3.48
=2 —€
g 1-0 |Agu
Z,= “Irw —(1+W)2 P (3.49
B n wW(2+w) | Agu™ €
1_14%2__(1_@
ZZ,"=1+7 > (1 )(1+W)3 c
(3.50
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NONEQUILIBRIUM CRITICAL DYNAMICS OF THE.. ..

PHYSICAL REVIEW E 69, 036113 (2004

1o ap . NF2 Agu € where{a} represents the parameter seg?, D, D, X, \, and
Z4(Z,7Zg) =1~ 6 U 7. Replacing the bare parameters and fields in B65
B with the renormalized ones, we find the following partial
L n+2 1-0 A © (350 differential equations for the renormalized vertex functions:
9172 1+w ' '
J S J +m +n +r +s
[ Yaro— T 5 Vst5 ¥t 5 vst 57
n+2_Agu” ¢ 1-0 |Agu™ ¢ T Roag 2 272 2°°
(szg)1/2: — T +§2 :I.——3 , Yengr s
6 € (1+w)3| € XT3 PSP ({q,w};{agt)=0. (3.56
(3.52
Here, we have introduced Wilson’s flow functions
ZsZg=1 A VA ’ lnz ’ iz (3.57)
3 =u—| InZg, ys=u—| InZg, :
€ Yé,U«aMO S, Vs Ma'”“o S
— 24 2w+w? | Agu €
+9 — 1= 3 , d d
(1+w) € 7p=,u@ InZ;, ypz,u@ Inz, (3.58
(3.53 0 0
for the fields and
n+8 Aqu ¢ 1-0(3(2+w
Zetu™ ‘Tﬁiﬁz[ﬁ‘ Tra| e - p| (359
Ya 'u&,u , @ .
Agu™ ¢ 69%  1-O]Agu ¢ . , -
W Sl _% _ 27|k , for the different parametershe subscript “0” indicates that
(1+w)? € u 1+w] e the renormalized fields and parameters are to be expressed in
(3.54 terms of their bare counterparts prior to taking the deriva-

tives with respect to the momentum scale

The Callan-Symanzik equatiori8.56) are solved by the
method of characteristics, introducipd €) = wt, where( is
a real continuous parameter. This defines running couplings
as the solutions to the first-order differential RG flow equa-
tions

supplementing Eq<¢3.37), (3.38), (3.40, (3.4)), (3.42, and
(3.44).

For model D @=2), the ratio of relaxation times con-
stitutes a relevant parameter in the RG sense, whence
— o0 asymptotically. Obviously, this leads to marked simpli-
fications in the above expressions for the renormalization
constants. In addition, as a consequence of the order param-
eter conservation law and the ensuing momentum depen-
dence of the vertices, we havd'z(0,w)=iw and

&qzrgg(q,0)|q:05—27\ to all orders in perturbation theory,
which implies the relation&ZzsZs=1, ZgZ5=1, and thus
Zy=Zg, which also follow to one-loop order from Egs.
(3.37 and(3.44), respectively.

da(e)
de

¢

—y.(0)A(f) with a(l)=ag.

(3.60

The solutions of the partial differential equatiof®56) then
read

TS (. {q,0}:{ar})

tde’|m r n

3. Callan-Symanzik and RG flow equations =eX;{ L 7[5 vs(€')+ Eys({i’)+ Ey;,(f’)

By means of the above renormalization constants, we can
now write down the Callan—Symanzik RG equations for the
vertex functions and the dynamic susceptibilities, which de-
scribe the dependence on the renormalization sgalend
thus on the renormalized couplings. These RG equations
connect the asymptotic theory, where the IR singularities be-
come manifest, with a region in parameter space where the
loop integrals are finite and ordinary “naive” perturbation ) _ )
expansion is applicable. They follow from the observation 10 begin the analysis of the RG flow equations, we re-
that the “bare” vertex functions do not depend on the renor-Cover the critical exponents for the equilibrium models C and
malization scaleu, D (see the original Ref$15] and[16] for the corresponding

field theory; the two-loop analysis was recently clarified in
Ref.[17]). Upon removing the effects of the nonequilibrium
perturbation by settingc=\ andD=D (we may putkgT
~kgT.=1), whence®=1,Ti=u, andg§?=g? in the preced-

S ASM=Nal .S
i EvM’)DFS PRt {a,05{a0)}).
(3.61)

C. Models C and D equilibrium critical exponents

d ‘Sh=naf s
P rS%Sr({qg,0};{a})=0, (3.59
0

036113-9
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ing expressions for th& factors, we obtain the renormaliza- n o,
tion constants for the equilibrium case to one-loop order: Yo~ Y= Y0~ 59Rr: (3.74
2 —€
_ n g°Agu
z2,=2'=7p=1--"—"—, 3.6 n+2_
P —D 2 € (3.62 Vo= =2+ ——Ug. (3.79
ZS: 1, (363)

In the result for the single nontrivial static RG flow function
o 1 @A € (3.75).t0 one-loop ordenrig=Uur— 39% represents t_he shifted
Zy "=2\,=1- TTw e (3.64  coupling the}t also results from directly integrating out the

scalar densityp, see Sec. Il. Indeed, from Eg&3.66 and

N2 UAQ© Nn+2 g2 Agu* (3.67) we infer itsZ factor

z:=1 6 € * 2 € (369 n+8 uAqu ¢
ZUZ 1— T € f (37@
N+t2ulgu ¢ n+4 g?Agu €
Zg=1- 3 € * 2 € , (369 which along with Eq.(3.75 is just the standard one-loop
result for the O(n)-symmetric ¢* theory. Note that for
n+8 uAgu ¢ g%\ g Agu € model D, takingwg— o in Eq. (3.73 yields y, =0.
Zy=1- 6 € +6{1- U) e We are now in a position to study the scaling behavior in

(3.67)  the vicinity of the various RG fixed points which are given
by the zeros of the R@ functions
In this equilibrium system, there exists a fluctuation-

dissipation relation that relates the imaginary part of the dy- _ _d

namic order parameter susceptibiligfq,) to the Fourier Ba= VaaR_'“@ ar 3.77
transform of the dynamic correlation functio@(x—x’,t 0

—t') 6P =(S"(x,) (X' ,1")): for the nonlinear couplings andg? as well as the relaxation

rate ratiow, B,=Wgr(yp— 7,). By means of Eqs(3.62),

Clao)= 280 m w(q.0). (369 (364, (366, and(3.76, we find
w

n+8

These quantities are connected to the two-point vertex func- By=Ug| — €+ TUR , (3.78
tions via C(g,w)=—I'gg(q,»)/|I'ss(q,®)|?, and x(q,)
=Ag¥Tg(—q,— w); thus the fluctuation-dissipation theo- N4 o n
rem results in the following relation between the two-point 139292R —e+ TURJFEQ% , (3.79
vertex functions

— 2\ - = Wo02 E_ L (3.80

I'sg(g,0)=— ImI'ss(q, ). (3.69 w=WRAR 5 Ttwg|’ -

The same identity must hold in the renormalized theoryFor model C, the flow functioiB,, yields three fixed points,
Consequently providedg*?>0, namelywg =0, wi=(2/n)—1 (which is
positive for 0<n<2), andwy=c. Stability requires that

Z,=(Zs/29)"", (3.70
. ' dBw n 1
and in the same manner for the conserved field — =il ——— (3.8
IWR 2 (1+wg)?
Zp=(Z,1Z5)"2 (3.71

) . ] o be positive at the fixed point. Consequently, fiet 1 we find
Both relations are indeed fulfilled by the above explicit one-ipat wi=1 is stable, whereas =0 for n=2. Recall that

loop results. Through tgking Iogarithmic derivatives Wi?h re'w’5=oo corresponds to model D; this fixed point is unstable
spect to the normalization scale one finds that the equilib-

um fluctuation-dissination th ol in model C for all values oh.
flum fiuctuation-cissipation theorem iImplies For the static couplingir we find the following zeros of

By the Gaussian fixed pointg =0, and the Heisenberg
fixed pointuy,=6e€/(n+8). Inserting these in turn into the
The explicit RG flow functions derived from the one-loop flow function 84, we obtain:gg?=0 andg} ?=2e/n corre-

renormalization constants become sponding toug =0; gg2=0 andgi?=2(4—n)e/n(n+8)
corresponding taif; . The stability of these four fixed points
- , (3.73 in the (Ug ,gé) plane depends on the spatial dimensioand
1+wg the number of order parameter componamt€hecking for

2yn=vs—vs and 2yp=vy,~ ;. (3.72

s Ok
vs=0, y=— 2
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positivity of the eigenvalues of the stability matrix (b) In the second regime with<2n<4, the stable critical
with the entriesiBy/dug= — e+ (n+8)Ur/3, IBy/dga=0, fixed point becomes
dBgldUg=(n+2)g&/3, and 9B4/dgi=— e+ (n+2)Ug/3

+ng3 at these RGB function zeros, we find that foe>0 uﬁzi, 22:2(4_n)€, wi=0, (3.92
(d<d.=4) theonly stable fixed points to one-loop order are n+8 n(n+8)
* * 2 * * 2
[>UZ -gc”], stable for 6<n<4, and[uj.go"]. stable forn leading toweakdynamic scaling with
The solutions of the RG equatiori8.61) yield for the 2(4—n)e 2 a a
order parameter susceptibility and correlation function in the Zg=2+ m= + n ;$2p= 2+ e (3.93

vicinity of an IR-stable fixed point the scaling laws
. % N (c) Lastly, forn=4,
x(7,9,0)=q 2 "sy(rq?,0/g> 2" ),  (3.82

5 %~ % % .~ *2__ *
C(r.a,0)=q % R 93C(rq7" wlg? ). Whrg 9070 Wm0 (9

(3.83
and consequentlgs=z,=2 take on their mean-field values
Settingw=0 in Eq.(3.82, we identify the static critical ex- to one-loop order. More generally far<0 the order param-

ponents eter and conserved energy density dynamics decouple at
. criticality, which implies purely model A dynamics for the
n=-vs=0, (3.84 order parameter, and uncritical diffusive relaxation for the
i conserved mode, i.e.,
n
e A (3.89 z5=2+cy, 2,=2, (3.95

with their one-loop values computed at the Heisenberg fixedvith c=6 In 3—1+0(e).
point uy; . The standard hyperscaling relation then gives for For model D, the conserved order paramet@+@) al-

the critical exponent of the specific heat ways relaxes much slower than the also conserved, but non-
critical energy density near the phase transition, and conse-
4—n quently w—o. Note that the identityZ,=Zg implies vy,
a=2-dv= 2(n+8) ¢ (3.86 =1ys, and hence the model B scaling relatiag=4— 7
holds. We now have onlywo different regimes, with the
Therefore, we may rewrite conserved field either influenced by the critical variable, or
not. Forn<4 (a>0)
*2_4 - 2 a
Jc —ﬁa—ﬁ; (3.87 u*—i *2_2(4—n)e WE = oo (3.99
Hntrg’ 9¢ “hntg  WoT :
to this order ine=4—d. The dynamical critical exponents
zs and z, that describe the divergence of the characteristivhence
relaxation times for the order parameter and the conserved N
density, respectively, are given by zg=4-7, z,=2+ — (3.97
— *
Zs=2tar vy, (389 whereas fom=4 (a<0)
Zp:2+ ’}/B (389 6e
uy = . 05%2=0, wh=o (3.99
For model C &=0) with nonconserved order parameter, n+8

we thus havehree equilibrium scaling regimegl5-17: (a)

In the first regime withn=1 (Ising symmetry, the stable with the decoupled model B dynamics described by

critical one-loop fixed point is zs=4-7, z,=2. (3.99
. 2€ «o 2€ N
Uj=3 9c°=5, Wc= 1. (3.90 D. Isotropic detailed balance violation in model D

_ . _ . _ We start with a particularly simple case of our various
This describes &trong scaling regime where the dyna}mlc nonequilibrium systems, namely, that of model D subject to
exponents for the order parameter and the conserved field aisotropic detailed balance violation. Previously, we saw upon

identical, integrating out the conserved field from the dynamic action
and taking the asymptotic limit of the ratio of relaxation
€ a times, i.e.,w=D/\—0o, that the nonequilibrium parameter
=z,=2+-=2+—. . P . . g o
25=2,=2 3 2 v (3.99 O drops out of the field theory entirely. This is also explicitly
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seen in the perturbation expansions for the vertex functions.
For example, consider the two point function

I'z5(9,0)
n+2 1
=\g? r+—(ﬂ—3§2)j —— +?+G(1-0)
6 pr+p

q
2P

2

Xf 7 7|
p (4 q_
§+p) +WwW E p)

cf. Eq. (A1) in the Appendix. We see that the second term
which involves® vanishes in the limitv—o. This is gen-
erally true of all the other vertex functions also. Therefore,
all the effects of the nonequilibrium perturbation are elimi-
nated. Consequently, the renormalization factors then be-
come identical to those of the pure equilibrium model
(3.62—(3.67), with however, the rescaled nonlinear cou-
plingsu—T andg®—g2. Therefore, the critical fixed points
and exponents are also accordinglgntical to those of the
equilibrium model D. This leads us to the distinct statement
that aconservedrder parameter subject to &wotropicnon-
equilibrium perturbation does not display any novel dynamic
critical behavior even wheguadratically coupled to a con-
served scalar density. We shall, however, see in Sec. IV C
that when model D is subject to amisotropic“dynamical”
noise, drastic effects may emerge in this system.

q
r+(§+p

E. Isotropic detailed balance violation in model C
1. Renormalization and one-loop RG flow functions

For model C 6=0), w< at the stable equilibrium fixed
points, so the nonequilibrium parame®®rdoes not disap-
pear from the asymptotic theory. As mentioned before, a
simple rescaling of the fields and coupling constants aIIow%
setting the relaxation rate and noise strength of the order

parameter equal\=\ (with kgTs=1 herd, whence ®
=D/D. With Z5=Z, , the ratio of Eqs.(3.44 and (3.49
gives Zz, and subsequently by means of E¢3.37) and
(3.50—(3.54 we arrive at

n 2(1-0)w|Agu €
—q_=2l
Z,=1-7 2 (1rw)? Pt (3.100
(1-0)w? Agu™ ¢
g =2
Zs=1+7 11w pat (3.101
=2 —€
o g Agm
=1+ T+w 2—(1 ®)(1+(1+W)2 -
(3.102

PHYSICAL REVIEW E69, 036113 (2004

n+2 Agu” € n+4 2(1-0
5 g M2 A " 2 )
9 3 2 1+w
w Agu €
x| 1- " (3.103
(1+w)? €
. n+8 A~ 67’ 1-0O]Agu ¢
U6 T e LT 1tw] e
2(1-0) 1 am €
~2 _
+9°|6 1+w ( +1+W e '’ (3109

supplementing Eq<3.38), (3.40), (3.42, (3.48, and(3.49.
From those renormalization constants, we infer the RG
flow functions

(l_®R)W§Q
~2
=-fgr—, 3.105
Ys gR (1+WR)3 (
~2
gr —Ug
=— -, 3.10
ST Thwg[ TR u+w@4 (9409
~2
gr 1-0g
=9yr= — , 3.10
Y ’)/X 1+WR (1+WR)2 ( D
_o|N 2(1-0g)wg
=—y=y9=04 55— |, (3.10
Y=~ ¥~ ¥5=0R 3 (1+we)? (3.108
L 3.10
’YD_ZgR' ( . 9
2+n+2~ _|n+t2 1-06g
P —F= Ur— - ’
Y 6 R gR 2 (1+WR)3
(3.110

nd the four coupled R@ functions

A P Lty
Bu=60r 1T+wg Ug) — € TUR
e i PO 3.11
YR 1+wg 1+wg/ ||’ (3.11D
2 n+2_
B@ZQR —€t 3 Ur
_,|n+4 1-6g Wg
TR T Thwg | 2/ ||
Wgr (1+wpg)
n 1 1-6
~2 R
=W —_— s
Bw=WRrOR 27 T+wWe  (11wg)?
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_ by a fluctuation-dissipation theorem. Upon inserting the
Wg OR(1-0g) . i .
Bo=0Or(v5—vp)=—20x > stable(for e>0) Heisenberg fixed point};=6€/(n+8), we
(1+wg) arrive at
(3.119
o N g2, N 3.12
2. RG fixed points and their stability By=0r n7g€ 29R|: (3.123

Forwg0r>0, EQ.(3.1149 yields three RG fixed points for
the nonequilibrium parametdd, namely, 0% =0, ©%=1, which demonstrates that the regimes as function fafr the

and®* =, But from existence of a nontrivial fixed poi 2 become inverted as
compared to the equilibrium cas@§2=2(n—4)e/n(n+8)
3B Wr(1—20g) >0 only for n>4, but is clearly unstable. The stable RG
PO _ 52 TRA PR/ 3.11 . L . L
90r 9r (1+wg)? (3.115  fixed point is thus characterized by vanishing coupl@ﬁ

=0 to the conserved field, which again implies decoupled
model A dynamic critical behavior, witp=0, v~ 1=2—(n

we infer that only theequilibrium fixed point®§q=1 is a )
stable. This implies that detailed balance is effectively re-" 2,)6/('“'8)’ andzs=2 to one-loop order, and purely dif-

_ 2_
stored at the phase transition in this situation, and thdusivez,=2. Forn<4, on the other han@j“=0 becomes
asymptotic critical behavior is that of the equilibrium model Unstable. . _ . o
C with the exponents given in Sec. lll C. It is, however, Next, for®Z =, the effective dynamic coupling in Egs.
instructive to investigate the possible existence of genuiné3-111—(3.113 becomes
nonequilibrium fixed points, as they might influence the scal- . _
; - ! . 2= 002 (3.1249
ing behavior in transient crossover regimes. 9r=Or0R- :

We begin with®§ =0. The RGg function for the time

*
scale ratiowg at @g=0 reads Thusy5=0 and

=2
n wg(2+wg) _ WeOR
—wod| = -2 TR By=——"72, (3.125
BW WRgR > (1+WR)3 (3116 w (1+WR)3
with the derivative whence we see thawj=c is stable, which immediately
implies thaty§=15=0=y} = andy}=v5=0=195 as
Pw _,| N Wr(4+Wwg) well. Since y* in Eq. (3.110 too reduces to the standard
—— =i - ————— (3.117) , T g : )
owg “R2 (1+wg)? ' static expression, see E.75, this fixed point describes

mere model A critical scaling, independent of the values of
Since the maximum value of the second term in the brackef§* andg*?. In fact
of Eq. (3.116 at wg=+3—1 is ~0.385<n/2 for any n

=1, the only fixed points are =0 andw =0, of which B—Gl| - e+ n+2, (3.126
the former is stable. A®} =0=wg , we find g SR 3 R '
yE= 7‘2 =yF= 71; =0, (3.118 in addition to Eq«(3.121), which only allows for the standard

decoupled model A Heisenberg fixed poiof;=6 €/(n
i} e . e, +8), 952=0 if n=4. As for ®% =0, there exists no finite
Yo=Y = =75=59"" (3.119  nonequilibrium fixed point fon<4.
At the unstable fixed poin®} =, wg =0,
n+2 n

* ~k =% 2 *
yi=—2+—0"-50 (3.120 Ys
6 2 Y5=0. N=rn=-5=0"2 (3.127
with Ti* andg*? denoting the zeros of
g Yi=—vi=v5=v5=0, (3.129
ﬁf,:TJR —€+ I]R y (312])
* n+2~* F* 2
Vi= -2+ U g (3.129
n+2 n
By=Ta| — e+ ——TUr— 03| (3.122
° 3 2 n+8 s
B’L]:T.]R —€e+ UR_GgR y (3130
Note the striking similarity with the equilibriun® functions 6
(3.78 and (3.79, yet with the crucial sign change in Eq.
(3.122, and the fact that the anomalous dimensions at the Ba=T2 — e+n+2U — 252 (3.131)
fixed point satisfy the relation@.72 that would be imposed g~ Or 3 UR™OR) '
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Again, the equilibrium relation§3.72 are satisfied. Asto be 1.6 - . - -
expected, the decoupled model A fixed poift=6e€/(n }

. i = 14 .
+8), 952=0 is stable forn=4 in the {ig,g2) subset of .
parameter space Whereas fo4 a novel fixed pointu’ 12 - .

=12€/(5n+4), g5?=(4—n)e/2 (5n+4) emerges, with
unusual scaling exponentFO, v 1=2-3(n+4)e/2(5n

+4), zs=2+(4—n)e/2(5n+4), andz,=2 (all to one- 08 .. i
loop ordey. But recall that this fixed point is unstable bothin | 77—

the wg and the®, directions. 0.6 - 1
This leaves us with the caseg; =0, which according to 4 | _
Eqg. (3.114 allows any value for the nonequilibrium param- \
eter®g. Yet since 0.2 i
B I . —— . . . '
V52 = — 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

atwg =0, stability requiredg=n/2. Quite generally, as in FIG. 1. The nontrivial fixed pointg?=Ga/ e andu=Tg/e [Eq.
equilibrium, the model A fixed poin¢3.94 with decoupled (3.138] as functions 0f®g=<n/2 for n=2 (0.94<®x=<1) andn
diffusive relaxation for the conserved scalar density is stable=3 (0.84<0@g<1.5).

for n=4, with arbitrary ®g<n/2, but unstable fon<4.

The corresponding anomalous dimensions become parameters. Whereas the ensuing anomalous dimensions sat-
isfy the equilibrium constraint€3.72), the critical exponents
individually differ from their equilibrium model C values,
and vary continuously as functions of the nonequilibrium
paramete®g, as shown in Fig. 2. We cannot exclude, how-
. L ever, that this unusual feature mi_ght merely constitute an
Yo=Y T DT Y559 (3.134  artifact of the one-loop approximation.
In summary, for the case of isotropic detailed balance vio-
lation in model C with a scalar order parametar<1), no
(3.139 stable genuine nonequilibrium fixed points are found. The
RG flow then takes the system to tequilibrium model C

Remarkably, the equilibrium relatiori8.72 hold once again fixed point with strong dynamic scalings=z,=2+alv
at any such fixed point. Inserting’ =0 into Egs.(3.112 (wg=1), and the standard scaling exponents as given in

and(3.111) and searching for nontrivial zeros leads toaquaSeC il C. However, for model C with two- or three-
dratic equation, which is solved by component order parameter, |n equilibrium governed by

weak dynamic scalingzg=<z,, wy =0), at least to one-loop
order lines of nonequilibrium model C fixed points are found

*

Ys
=0, ¥ =9 = =g*2R, (3.133

n+2_. _ )
Yi=-2+—"T*-0*

5 T0ORg|.
6 R

= 4A[ 3n(1-20R)*9n?(1-20g)°+4(n—4)A],
0.4 . . .
and 03| % )
~ € 1+2§§ "o 02} % s -
Ur=iiz| 1t |37 O or L ]
with 0t i
01 F i
n?(n+8) 0
A=T+(5n+4)®R(1—®R). (3.139 02} -
0.3 .
With appropriate sign choices, this reduces to the specia . \
cases with®* =0, 1, and already explored above; e.g., for 04 ™ i
0g=1, one finds gi?=2(4—n)e/n(n+8) and T* -0.5 . . ' i i
= 24e/n(n+8), i.e.,U* =U* —3g5°=uf;=6¢/(n+8). Yet, 08 09 1 1tz A8 14 S
as depicted in Fig. 1, Eq43.136 permits an entire interval of ©
nontrivial fixed point solutions, namely, for 0.849 ;<1 for FIG. 2. Critical exponents, zg, andz, for the isotropic non-

n=2, and 0.84&0g=<1.5 for n=3. Apparently, therefore, equilibrium model C withn=2 (0.94<@x=<1) andn=3 (0.84
there exists dine of fixed points that describes slight pertur- <®z<1.5) in the weak dynamic scaling regime witwj=0) as
bations from equilibrium for two- and three-component orderfunctions of® z=<n/2.
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that include the equilibrium fixed points, yet allow foon- n_,Aqu
tinuouslyvarying static and dynamic critical exponents. For Zp=1- 29—
n=4, the conserved scalar density effectively decouples

from the order parameter, which then follows model A dy- 55 in Eq.(3.40). The results of renormalizing those quantities
namic critical behavior. The effective noise temperature ratiqhat do not involve taking derivatives with respect to the

(4.5

€

© naturally plays no role in this decoupled scenario. external momenta are quite similar to the previous isotropic
results. The effects of the anisotropy in these cases is a mere
IV. ANISOTROPIC VIOLATION OF DETAILED BALANCE replacement of the factors - with 1_(dH ®H
IN MODELS C AND D +d, ®,)/d in the expressions for the renormalization con-

A spatially anisotropicnonequilibrium perturbation is ap- stants. For example, the fluctuation-indudedshift becomes

plied to models C and D by dividing outd-dimensional ) 1 2
space into two sectors of dimensionaldy andd, (with d; Fo=— n (Ti— 352 _ 9
= p rc_|_ p2 1+w

+d, =d), and assigning to them different noise strenddhs 6
and D, , respectively, for the conserved energy density:
DV2—DVf+D, V7, whence Eq(2.9) is replaced with

dH dl
x(1-do-—e0, || ———.
d p ro/(1+wW)+p?

d (4.6

roEry\ — I3 2.1 R 2 ’ ’
(#0670 ==2(Dy ViDL VD) =) St =), After rewriting in terms of the true distance from the critical
(4.3) point 7=r —r., subsequent multiplicative renormalization
The conserved field noise in the two sectors can thus bef I'z5(0,0) andd,I'zs(0,0)],—o leads to
thought of as being coupled to thermal reservoirs with dif-
ferent effective temperaturé§ and T, , whence we obtain
two distinct nonequilibrium paramete®,, =D, \/DX.

Correspondingly, a new degree of freedom enters the prob-
lem in the form of

=2

n+2
——(U—37%) +

(Zs29)"°2,2,= 1~ 6

(1+w)?

d” . dL
X 1—EH—F®L

Agu €
E 1

o=0,/0,, (4.2
the ratio of the temperatures of the heat baths coupled to the “.9
conserved density in the two spatial sectors, each measured T2
with respect to the order parameteritical) temperature. An (ZzZ9)Y?=1+
anisotropic perturbation clearly requires that1l. We may 1+w
choose the label assignments such ta<®,, ie.,
O=o=1. In general, we must allow for the anisotropic noise
in Eq. (4.1) to induce further splittings in theenormalized

parametersDg, Ag, and Ag as well (see Ref.[10]). For  which are just the straightforward generalizations of Egs.
model D, we may in addition impose anisotropic strengths in3 33 and(3.37.

1
14w
d,

«[1-%e- L
d | dt

Agun~ €

, (4.8

the conserved order parameter noise, Yet the resulting expressions become more complicated
(L) (X 1)) when the quantities to be renormalized involve derivatives
' ' with respect to the external momentum. Consider

=—2(\\Vi+X, V2)a(x—x)a(t—t")6F, (4.3

I5s(ar..0)lq,, <o

whereupor®,, =Dy, A\/DX,, . o,
A. The anisotropic nonequilibrium model C _)\[ 1— 9° f ( 1 ”pﬁ+ 0, pf)
1. Renormalization to one-loop order (1+W)2 p p2

For model C &=0), we merely need to replad@q? 1 45° d
—Dygf+D,qf . Therefore, the only modifications to the X[T/(1+W)+p2]2+ (1+w)? 92
preceding perturbation expansions occur in those diagrams s
which contain an internal conserved field propagator ( @Hpﬁ.;. @Lpf) (QH/L'PH/L)Z
G? (g,w). Egs.(3.39 and (3.4 still hold, which implies XJ 1- ;

pp(q (1)) q ( & ( :D p P p2 [T/(1+W)+p2]3

_7-1_>-
2,~2;'=75, (4.4 4.9

to all orders in perturbation theory. Removing the logarith-evaluating the integrals at the normalization poiat 12 in
mic divergence in’;,(q,0) gives to first order dimensional regularization then yields
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~2 —€ —€
wg d” d, Aqp n+2_Agu _In+4 1
~ 1/2 —1_ _ = -1 — T 2 _
(282972, =1 (1+W)3( a9 g9 Zay. 3 - 4 l+w
d G0 —0,) Agu ¢ w d d
T : 4.1 _ _ g, -t
3d  (1+w)® e 449 W rwe (1 a1 ®L)
Next, fromI'zg(0,0), we get iM 9=0, |Agw * a1
: (4.17)
3d (1+w)3| €
=2 —€
g (d d Agm
Z§ZX:l+m E”@rf’ﬁ@i)T, (41]) B _n+8 Agqp 5_294 1 1 1_%@
Ul 6 € T 1+w d |
and likewise the renormalization of the three- and four-point d, a 1 1
functions results in expressions that can simply be obtained s L) +25% 3— Ttw 2+1T
from Egs. (3.46 and (3.47) through the substitutior® € w w
_>(dH®||+dL®L)/d- Q. —€
Upon identifying quuzzwu and factoring from these % 1_d_@_d_iL) iM 0= 0, |Agp '
products ofZ factors, we obtain at last d d 3d (1+w)3] €
(4.18

—o-1l_.
2,=2;"=75,,
_.ln 2w d d Agu €
-1-7° 2 2( _EHG)H_FL J.) -
(1+W) €
(4.12
=2
= g 2 _% _d_lH
ZSI/L_1+(1+W)3{W (1 d ®H d 0,
_d, Agu™ €
+3;d”(®\|—i) pa (4.13
« 2119 [ (14— L |[1-Yg,_Le
St 1+w (1+W)2 d l d +
d g 0,— —e
S+ 01— 0, |Aqu ' 414
3d (1+w)?| €
I d  d;
MNicm TN T T 14w _(1+W)2( _E®”_F®l
d,6,—0, |Aju"
So ] e Y L , (4.15
3d (1+w)?| €
_ n+2 Agu ¢ _,|n+t2 1
7-”/J__ - 6 he € 2 _(1+W)3
d d d,o,—-0,|A
X 1——|®||——lj_)i;/” H L | Zal ,
d d 3d (1+w)3| €
(4.1

in addition to Eqs(4.4) and(4.5).

2. Anisotropic RG fixed points

We first focus on the nonequilibrium anisotropy parameter
o. Yet because the anisotropic contributions to the renormal-
ization constantixwl and ZM\u (even when these are not
chosen identicalandZE,Hu=ZDH/L, respectively, are equal at

least to one-loop order, its RB function reads

Bo=0r(YB, = Yo, F vy~ Y% T Y5, T ¥, ~ N, TR,)=0,
(4.19

leaving the fixed poinr* undetermined. Indeed, consider-
ing the heat bath ratios in the two sectors separately, we find
(omitting the|/L subscripts on the renormalized couplings
W andg?)

d” dL
1I-4O9r™ g

Bey, = O,r

(4.20

B 2WRGA ®|/J_R(
(1+wg)?

in almost obvious generalization of E®.114, and the cor-
responding stability matrix becomes

IBe /O  IBe Ok
dBe 1O Pe 10, r

U
d(1+wg)?
[d_2d||R_dLLR _dLHR

(4.21
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We restrict our investigation to the casgQggr>0 here, - . l/\l
since for weak dynamic scaling withv§ =0, we already _(1+W )P (L+w*) == 3d =g (©1—0.). (43)
found genuine nonequilibrium behavior even for isotropic
detailed balance violation in Sec. Il E. We then find that theSince at this fixed point
fixed pomts@Hu0 0 and@H/N < are unstable, whereas
there is a stabléne of fixed points given by (7/3wm 2w*§§(3n 1

(4.32

IWR  14+w* | 4 1+wt

d,0f +d, 0% =d, (4.22

it is stable forn=4/3(1+w*). The associated anomalous

which incorporates the equilibrium fixed powﬁ)Heq dimensions become

—Ojeq. Its stability matrix eigenvalues are 0 and 1. The

marginal flow direction is clearly along the fixed lifarbi- n 1
trary valueo™). In fact, one readily computes for the anoma- v =T3 — (4.33
i i 2 1w
lous dimensions
d 0,-0 ok x_ o
¥ = * =504 ”—la (4.23 Y5 =75=7 =50, (4.3
(1+wg)
n+2 *
27 _Gin, 976, yi=—2+—TUr—Ta| N+ ) (4.35
Y8L= " T, * 3d R Lrwn)®' (4.24 6 1+w*
We now need to find the RG fixed points from the coupted
n_ functions
o=~ %= Y0= ¥ =30r. (4.25
~ n+8_ > 4
~2 Bﬁ:uR —€et 6 uR_ZCUgR +GgR! (436)
9=, diy, =06, 4.26
M N T T we T 3d R (1wg)? I
By=T5 — e+ 3 Tr—2C,03|, (4.37
=—-2+ My 4.2
Yim T g IR 42D here
n+2 d, 0,-0 3n w*
_gé iﬂ I L ) (428) Cg:T'i‘ % (43&
2 3d (1+wg)® 1+w
Consequently, the relation§3.72 that follow from the n w* n
fluctuation-dissipation theorems for the order parameter and Cy=2+ 2 + 1rw* =Cgt2- 1 (4.39

conserved density, respectively, are fulfilled even here. In

this sense, the entire fixed lirt8.22) again represents a sys- note that 3)/4<cy=<1+3n/4. As usual, the model A fixed

tem mimicking Fhermal equilibrium, albeit with potentially point u% = 65/(n+8) ~*2 =0 is unstable fon<4, but be-

anomalous Sca“ng exponents. comes stable fon=4. Forn<4, the stable RG fixed point
Next we consider acquires nonzero values for both coupliri‘g;sand@é, to be

found as the solution of the quadratic equation following

_ R ) | from Eqgs.(4.36 and(4.37):
By, =WrdR 3 1+wg  3d (14+wg)3| 4.29
€
with Gr=4c[B+ VB?—8(4—n)C],
9By, n 1 1-2w 3 2¢,03
e _—2| ™ L/H R . _ S€ CgOr
(?WR gR 2 (1+WR) ( )(1+WR)4 uR_n+2 + € )1 (44@
(4.30 .
with B=(n+2)(8—-n)—4(4—n)cgy,
Thus, the weak scaling fixed poimtg =0 is stable forn
=2+(2d,,/3d)(®—0,), whereaswp = is unstable in and C=2(n+2)2—(n+2)(8—n)cy+2(4—n)cj.

the w direction. In addition, there appearssaong scaling
nontrivial fixed pointw* given by the solution of the non- This incorporates the equilibrium fixed point, since with
linear equation wg=(2/n)—1 one obtainsB=6n and C=n?(n+8)/8,
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8 1

7t 0.8 | 1
6 06 | 1
5r 1 0.4 1
4 / . 02t .
3l d . ot ]
2t 1 0.2+ 1
1t 1 0.4 - 1

o 06 1 1 1 1 1

0.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5

Cg CQ
FIG. 3. The nontrivial fixed pointgzzﬁﬁle andu=Tg/€ [Eq. FIG. 5. Critical exponentg andzs=z, for the anisotropic non-
(4.40] as functions oty , 3n/4<cy<1+3n/4forn=1, 2, and3.  equilibrium model C withn=1,2,3 as functions o€y (3n/4=<c,
<1+3n/4).

whence the two solutions in E¢4.40 reduce to the two B. The anisotropic nonequilibrium model D
nontrivial model C fixed points discussed in Sec. Iligy: We next consider the critical behavior of our nonequilib-

=2¢/n, uz=0 andG&’=2(4—n)e/n(n+8), u=6€/(N  rium version of model D with spatiallyanisotropic con-
+8) for g3 and Ug=Tr—37%. The solutions(4.40 for n  served noise. The anisotropy may now be imposed through
=1,2,3 are shown in Fig. 3 as functions@f. Upon insert-  Xq?—Xgf +X, g in addition toDg?>—Dyaf+D, qf , see

ing into the anomalous dimensio.33—(4.39), this once  Egs.(4.3) and(4.1). We first compute the fluctuation-induced
again yields continuously varying static and dynamic critical T, shift from the criticality conditiondg2I"3s(q,0)|q-0=0.
exponentsy=—v%, v 1=—y*, andzg=2+ yi=2, as Yet for this purely relaxational dynamics, at least to one-loop
depicted in Figs. 4 and 5 as functions of the parameger ~ order the order parameter noise strengfth"@ do not enter,

Via Eq. (4.38, the parameter here is the time scale ratfg ~ and we again arrive at E¢4.6) as for model C with non-

or equivalently, the effective temperature differeng conserved order parameter. However, since asymptotically
—0, between the longitudinal and transverse sectors, se¢— here, the nonequilibrium parametes,, disappear,
Eq. (4.31). In conclusion, the one-loop RG flow equations Simply leaving the static one-loop, shift
for the nonequilibrium model C with spatiallgnisotropic

noise allow for novel strong dynamic scaling regimes with _ n+t2__ 1
zg=2, with continuously varying critical exponents even for Fe= Tu b rcerz'

a scalar order parameter that encompass the equilibrium

model C fixed point. In the same manner, all other fluctuation contributions reduce
to the equilibrium expressions. As demonstrated explicitly in
Sec. Il A by integrating out the conserved scalar density, the

(4.41

02 ' " qn=1) —— terms violating detailed balance become obsolete at the
n(n=2) - model D fixed pointw} =cc. We remark that generalizations
ot N (n=3) . . .
e of dynamical models with conserved order parameter that
A ., contain reversible mode couplings to other conserved quan-
0.2 - N 1 tities behave markedly different when subject to spatially
anisotropic noise correlations: In models H and J with “dy-
04 - T namical” noise, the nonlinear mode couplings indaceéso-
tropic shifts of the critical temperature already to one-loop
-0.6 | . order, thus rendering the fluctuations soft only in one subsec-
tor of momentum space. For the ensuing two-temperature
08 | § models H and J, no stable RG fixed points could be identi-
fied, perhaps indicating that no simple nonequilibrium steady
» ) ) ) ) ) state is approached in the long-time lirfili0,18,19.
0.5 1 15 2 25 3 35

C. The two-temperature model D

FIG. 4. Critical exponenty for the anisotropic nonequilibrium 1. Derivation of the effective theory
model C withn=1,2,3 as functions of the parameteg (3n/4 The anisotropic nonequilibrium model D discussed in the

<cy=<1+3n/4). preceding section does not actually represent the most gen-
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de=4-d;. (4.4

with a conserved order parameter coupled to a conserved

scalar density. Rather, one can generalize EjS) and(2.6)
with a=2 to

N
2 2
r”—)\—HVH—ZVl-F

as*

_ 2 3
5 =MV S

u
—”2 5ﬂ2+g\|P
6 5

+A, V2 S+ 7,

Ul 2
rL—Vfﬁ—E% S +09.p

(4.42

2 za: Saz%"
4.43

with noise correlators
(L (XD 1)) == 2(X VE+ X, V2)(x—X)

X S(t—1")8%F, (4.44

(n(xH)n(x' t"))y=—=2(DV+D, V) s(x—x")s(t—t').
(4.45

We choose the labels such that<r, which is to be inter-
preted as a lower-order parameter temperaf[ﬁ*e:TH in

It is reduced as compared to the isotropic case because the
critical fluctuations are confined to thig -dimensional sub-
sector here.

To proceed further, we rescale the fields accordin§to

— (X, IN)Y2S®, p— (N, IN,)Y2p, and define

A o Ao
u, gfzzgf. (4.47)

T

X
UL:—

CcC= )\l

The effective Langevin equations of motion for the order
parameter fieldsS* and the conserved density near the
phase transition at last read

&\ [eVi+Vi(r,—V])]s®
Jt Al ” LA 1

u
FNVE 5 2 S G p (ST, (448
B
ﬁp 2 QL a2
—e =DV p+ 5 2 57, (4.49

with the corresponding noise correlations

o oI\ 2 "\ ea
the transverse spatial sector. Thus, at the critical point, the ({“(XDZP(X'.t'))= =2\, VI 8(x—X")8(t—t") 8,

longitudinal fluctuations remain uncriticgtstiff” ), similar
to equilibrium anisotropic elastic phase transitig24], or
the behavior at Lifshitz point§22]. Nonlinearities and

higher-order gradient terms should then only be relevant in
the “soft” transverse directions. In analogy with the two-

temperature nonequilibrium model ®r randomly driven
lattice gases[11-13, it is possible to construct an effective

field theory which reduces our most general anisotropic

model D to an equivalenéquilibrium system, albeit with

spatially long-range correlations. We first construct this ef-
fective field theory and then perform the perturbational
renormalization of the model to one-loop order, discussin

finally the ensuing RG flow equations.

Since 7j=r—r>0 in the noncritical momentum space
sector, whereas, =r, —r,, —0 at the phase transition, we
expect the terms:q}, gfg’ to be irrelevant as compared to
qj. In fact, in the Gaussian theory at criticaliﬂy”q-”qﬁ
~qj. Hence we apply anisotropic scaling wiflg, 1= u,
[a)]=[a,1*=u? [w]=[q, ]*=u* which yields the fol-
lowing scaling dimensions[Xi]i[M]z,uo, [X”]:[l‘”]
:Iu“72= )\:M74’ [TH/L]Zlu‘zi [DL]:[DL]:IU“Zv [DH]
:[DH]:IU'O’ and With[Sa]Z,(,L_l+d“+dJ-/2, [p]:MdH+dl/2 at
last [u,, 1=[gf,, 1=pn* 9. Consequently, the longitudi-
nal parameters all beconigelevantunder scale transforma-
tions, except the marginal prodye, TH]:,LLO. Therefore in
the vicinity of the critical point, all nonlinearities in the lon-
gitudinal sector and fluctuations g, qfg’ can be safely
omitted. From the naive scaling dimensionsugf, andgy,,
we infer the upper critical dimension

g

(4.50

(n(x,t)n(X',t'))==2D 0, V2 3(x—x")8(t-t'),
(4.51)

where® , again denotes the heat bath temperature ratio,

D, A,

=— . 4.5
55 (4.52

1

The preceding Eq$4.48—(4.51) define thewo-temperature
nonequilibrium model DOur analysis that led to this effec-
tive critical theory for the most general nonequilibrium
model D with dynamical anisotropy closely parallels that of
the two-temperature model B1-13. Notice that after the
field rescaling, only the noise strength in E4.51) violates
the Einstein relation with the corresponding relaxation con-
stantD, in the critical transverse sector, @, #1.

Yet we can certainly write Eq$4.48 and (4.49 in the
form of purely relaxational Langevin dynamics

9S*(x,1) B , OHed S.p] i
a0t Lmﬂ“ (x,t), (453
Ip(Xt) _ -, SHer Sip]
ot LWﬂLn(X.t), (4.54

with an effective Hamiltonian
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d caf+qf(r, +qf) 2n, 9t
Heﬁ[s,p]=J iy A W sgsi-q) Ig(d,0)= IMm 'as(q, ). (459
(2m) 2q7 @
| UL oo ) Moreover, none of the nonlinear vertices carries transverse
+j d*| 77 ;b S*(x)*$(x) momentum, which leaves theqf term in the propagator

unrenormalized to all orders in perturbation theory as well,

G, , 1 5 942I'ss(0),0) g =0=\ . C, i.e., Z, Z;=1. In summary, we
+ = *(X)%+ = : 4. I ” . .
2 p(x)%‘, S (x) ZP(X) (4.59 obtain the exact relations
As is obvious from its harmonic part, this Hamiltonian con- ZSEZ~;1§ZMEZEl, (4.60
tains long-range interactions generated by the dynamical an-
isotropy, akin to those found in driven diffusive systems ZpEZ'glEZDLZL' (4.61)

[4,11], but also at equilibrium ferroelastic phase transitions
[21] and at Lifshitz point§22]. However, our earlier inves-

tigations of model D subject to various nonequilibrium Periructure as for the equilibrium model @r model C, with

turbations showed that the heat bath temperature (4tx?) w—). To one-loop order, which is determined entirely by

disappeared entirely in the asymptotic limit; since we are. imple combinatorics, we can in fact immediately take over

?:;ghggnggzln?[)m}y ﬁ'gj tlf;]%eterznsi\:taers?at?r?ct%rdt tmse : e equilibrium renormalization constari&62—(3.67) with
LTl . ' 9 9 hifted critical dimension, the replacements~t,, g

conserved scalar density from the dynamical action proceeds _," 4 i
precisely as in Sec. lll A, since the dynamically generated—’gi/C I*, and modified geometry factdt,—A(d,.d,) as

long-range interactions only appear in the order paramet&'ven in Eq.(4.58. This is confirmed explicitly by renormal-
propagator. As a result, the remaining detailed balance vio?'"9

lation plays no role at all for the fixed point properties, and
the two-temperature model D in effect becomeseguilib-
rium system. Thus, we expect it to relax towards a stationary
state that is characterized by the Gibbsian probability distri-

The perturbation expansion naturally acquires the same

I'ss(q,00=A,

n+2
cq2+qi+qin(1—T<m—3§E>

bution P S,p]exp(—Hel S,p]), with the effective long- pj
range anisotropic Hamiltoniaf#.55). J (4.62
p [epf+pl (7 +p)?)?
2. Renormalization and critical exponents o . 5 .
) ] ) at the normalization point, = u<, which leads to
We introduce the renormalized fields and parameters as in
Sec. Il B, supplemented with Z, =1, (4.63
1
CR:ZCC! ®LR:Z®LL' (4.56) n+2.[]l_3§f A(dH’dl)/’L_e
Z,=1-—% i . . (469
But the deviation from the critical dimension now reads ¢
e=d,—d=4—d—d=4—2d~d, , 457 Similarly, the logarithmic singularity in
4
. . . . n p
and we define the anisotropic geometric factor as I5,(0,00=D,q? 1_:ng =
’ T 25 e [epf P2 (7 +pu)?R
I'(3—d/2—d)/2)I'(d/2) (4.69
A(d”vdL)Z d—1 _d/2 ’ (458) . .
207 79T (d  12) is absorbed into
with A(0,d)=A4. As a consequence of the conservation _ n ’C}f A(dy,d )u"
laws, and the ensuing momentum dependence of the vertices, Zp, =1~ 2 cdy2 € : (4.66

in analogy with the isotropic situatiofsee Sec. Il B the
following relations hold taall orders in perturbation theory:
I;,(00)=io, dg? FT,T,(qL,O)|qL=OE —2D,0,, I'sg(0,w)

=iw, and aqirgg(ql,oanoz—z)u, whenceZ;Z,=1,

Finally, the three- and four-point vertex functions yield

n+2 T, A(du,di),ufe

Zylp Zg =1,757s=1, anngZMEl. Note that since the Zg= 3 2 €

order parameter Langevin equation fulfils the Einstein rela- - .

tion, this satisfies the identitZ, =(Zs/Zz)"? following N n+2 91 A(d),d)u 467
from the fluctuation-dissipation theorem 2 9 € ’ '
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n+8 T, A(dj,d)u € but with e=4—d—d;. To two-loop order, the static critical
Z,=1- 6 od2 . exponents were evaluated in REE3]. In addition, upon in-
¢ voking the exact relationt4.60, i.e., ys=vy, =~ v, we
=2\ =2 — I
g 97 A(d,d € arrive at
+6| 1-— ﬁM (4.68
u,/c’l € z,=2+ 'yBl , (4.79
as well asZ,=Zp, whenceZg =1 as expected: Since zs=4+ ) =4-1, (4.76
the nonequilibrium paramete®, disappears from the
asymptotic theory entirely, its fixed point remains undeter- vE 7
mined, B =0. We also remark that th&: shift obtained A=l-—5=1-7, (4.77)

from the criticality condition is
All order parameter scaling exponents are thus given by the
~ ~ 2/(4—d—d static critical exponents, precisely as in the two-temperature
(n+2)(t, —35%) A(dy.d,) | ”’_ model B[11-1, precisely P
3c(d+dj—2)(4—d—d)) As in equilibrium, the same is true for the dynamic criti-
(4.69 cal exponent governing the conserved energy dengity
Since{.=0 in the one-loop approximation, the ensuing RG
The divergence of the denominator here indicates that in ad8 functions foru, andg? are just Eqs(3.78 and(3.79 of
dition to the reduction of the upper critical dimension, thethe equilibrium model C/D. Consequently far<4, ”gf
lower critical dimension is lowered as well W.=2—-d|, —gi?=2(4—n)e/n(n+8)=2a/nv and
just as in the two-temperature model[ BO-12.

As in Sec. Il B 3, we can now define flow functions via
logarithmic derivatives of th& factors with respect to the
renormalization scale:, see Egs.(3.57—(3.59, with {a}
=T,, §°, \,, ¢, and 7, here. The solutions to the RG whereas fon=4, a<0 andg® —0. Therefore the coupling
equations for the vertex functions are given by E361), between the order parameter and the conserved density be-
with running couplings and parameters determined by theomes irrelevant, resulting in a purely diffusive
flow equations Eq(3.60. The general scaling form for the
renormalized order parameter response and correlation func- Z,=2. 4.79
tion thus obtained at an IR-stable fixed point becomes

|r0c|:

o
z,=2+—, (4.78

Therefore, the independent static and dynamic critical expo-
nents to one-loop order look identical with those of the equi-
_otpn| T 9 @ 47 librium model D, albeit with shifteé=4—d—d,. The order
X(70.0),0, @) =9, % x thqled gz | (470 harameter scaling exponents, including the additional anisot-
s - ropy exponent, are, moreover, precisely those of the two-
temperature model B.

C(r w)=q 27 a9 @
NI ([P I a. s ) V. SUMMARY AND CONCLUSIONS

(4.7 In this paper, we have studied the critical behavior of the
relaxational models C and D with nonconserved and con-
where, in addition to the usual static exponents;, and the  served order parameter, respectively, coupled to a conserved
dynamic exponent, the anisotropy scaling exponefithas  scalar density, and subject to both isotropic and anisotropic
been introduced. nonequilibrium perturbations. This supplements previous
Since the two-temperature model D is effectively in equi-work on the identification of genuine nonequilibrium critical
librium, we may insert the Heisenberg fixed poiof; behavior in the form of modified dynamic universality
=6¢/(n+8) for u, =T, —37° to obtain the static critical classes ifD(n)-symmetric model§19]. These investigations
exponents, which thus assume the usual one-loop form  have demonstrated the general robustness of the equilibrium
critical behavior in models with nonconserved order param-
eter with respect to the violation of detailed balance, both
isotropically and anisotropically. This remarkable stability
has been established particularly for model A which repre-
1 . n+2 sents the simplest critical dynamics with a nonconserved or-
Vo= —yn =2 nts® (473 der parametef7—9|. But even in more complicated situa-
tions involving reversible mode couplings between a
nonconserved order parameter and additional conserved
a=2—dp= 4-n c 4.74 quantities, viz., models E and G, or thedicomponent gen-
2(n+8) "’ eralization, the SSS modgR3], the equilibrium RG fixed

7=-v5=0, (4.72
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point turned out to be stable, and thus describes the For the nonequilibrium model D with isotropic detailed
asymptotic critical power laws, despite the existence of adbalance violation, the relaxation of the conserved noncritical
ditional genuine nonequilibrium fixed poinf&0]. density occurs inevitably much faster than that of the also

Our results here for model C witbcalar order parameter conserved order parameter. Hence the conserved energy den-
(n=1), which extends model A to include a nonlinear cou-sity is always able to keep up with the critical fluctuations
pling to a conserved scalar density, are in accord with thisind does not in turn influence the order parameter dynamics.
general observation. Specifically in the casdsotropicde-  This is clearly seen in the perturbation expansion upon tak-
tailed balance violation, the coupling of the order parameteing the limit w—c for the diffusion rate ratio of the con-
and the conserved field to different heat baths gives rise teerved scalar density and order parameter, whereupon all
the nonequilibrium parameté® which represents the tem- terms involving the heat bath temperature rédialisappear.
perature ratio of these heat baths. This variable induces difA further rescaling of the static nonlinearity—T and the
ferent renormalizations for the noise strengths, with the poseoupling constant?>—g? then reduces this nonequilibrium
sibility for genuinely new dynamic as well as static critical model D variant fully to its equilibrium counterpart.
behavior. Even when unstable, such nonequilibrium fixed However, introducing dynamical anisotropy, i.e., different
points would affect crossover features and corrections teffective noiseand ordering temperatures in the longitudinal
scaling in the critical regime. However, a stability analysisand transverse spatial directions in model D with conserved
yields that the equilibrium fixed point that descriteisong  order parameter has a much more drastic effect, since now
dynamic scaling \W¢ = 1) with ®=1 remains stable. At least only the momentum space sector with weaker noise softens.
to one-loop order, we could not identify any genuine non-As with the anisotropic nonequilibrium model [B1-13, it
equilibrium model C scaling regime for the case of a scalais possible to recast the emerging two-temperature model D
(Ising) order parameter, even for the extreme situations withwith its nonlinear coupling to a conserved density into an
either®=0 or @=«, Forn=1, the asymptotic critical be- effectively equilibrium model, albeit with a Hamiltonian that
havior is thus definitely governed by the equilibrium modelalready contains long-range correlations. The consequences
C fixed point, with the static critical exponents of the are strongly anisotropic scaling, and a reduced upper critical
O(n)-symmetric * model, and with equal dynamic expo- dimensiond.=4—d;. We finally remark that this feature of
nentszg=z,=2+alv [15,16. The critical behavior again the two-temperature relaxational models B and D is at vari-
reduces to that of the isotropic case as described abovance with other conserved order parameter systems that in-
Therefore, we obtain the remarkable result that a quadratigorporatereversiblemode couplings to additional slow vari-
coupling of a scalar order parameter to a conserved densit@bles. Upon introducing anisotropic dynamical noise into
which preserves the internal symmetry of the correspondingnodels J10] and H[18], the equilibrium integrability con-
equilibrium system, does not produce any novel universalityitions become irretrievably violated; at least to one-loop
classes for models with a nonconserved order paramete@rder one cannot even find any stable RG fixed points, sug-
subject to detailed balance violations. This result is to begesting that simple nonequilibrium steady states may not be
seen in contrast with the system studied in R2#] which ~ sustainable in those situations.
incorporates dinear coupling of a conserved field to a non-
conserved order parameter; in that case, effective long-range
interactions are generated, which yield novel nonequilibrium ACKNOWLEDGMENTS
scaling features.

For model C withn-component order parameter, RG fixed
points with®* #1 do appear fon>4. Yet in this situation,
the order parameter effectively decouples from the conserve,
density, resulting in model A critical behavior. However, our
RG analysis yields more interesting critical scaling for the
nonequilibrium model C with two or three order parameter
components. In equilibrium, one encounters weak dynamic

N . . X
scaling in these cases, with=z, (W, =0). We find that the APPENDIX: EXPLICIT ONE-LOOP RESULTS
on_e-loop flow equations aIIO\_/v_ f(_)r an entire line of fixed FOR THE VERTEX EUNCTIONS
points encompassing the equilibrium case. Consequently, an
interval of fixed point values emerges for the nonequilibrium In this appendix, we list the explicit results to one-loop
parameter®, leading to continuously varying static as well order in the perturbation expansion for the vertex functions
as dynamic critical exponent@s shown in Fig. 2 Curi-  required for the renormalization of the parameters and cou-
ously, the general scaling relations imposed by theplings of models C#4=0) and D @=2). In the following
fluctuation-dissipation theorem remain satisfied along thisxpressions the momentum integrals are given in abbreviated
entire fixed line. In a similar manner, for the nonequilibrium notation, i.e., [, .. .=(2m) 9fd%..., and theinternal
model C with spatiallyanisotropic dynamical noise, we ob- frequency integrals have already been perfornodd the
tain a line of nonequilibriunstrong scaling fixed points for residue theorein We do not provide the Feynman graphs
n<4, i.e., even for a scalar order parameter, with an allowedhemselves, but only note the number of the contributing
interval of fixed point valuesv*, characterized again by one-loop diagrams for each vertex function.
continuously varying scaling exponen(tsigs. 4 and & For I'zs(g,w), there are three one-loop graphs that give
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emorial Trust, Grant No. J-594. We gladly acknowledge
helpful discussions with Jaime Santos, Beate Schmittmann,
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a
s
n+2 2 2 2 2
I'zs(0,0) =Nq? +—(u 3g) +q +9°(1- ®) a 7D 2
2y +p T (N I e
Y 2 A2
4 1+ a~2J 1 1 (A1)
T Py SRR B T )
2P X T2TP 2 TPl TN 2P

Only one one-loop diagram contributes to each of the other three two-point functions. The resulting expressions read

. n 1 1
I';,(0,0)=iw+Dg? 1_§§2f q 2 q 2
p —
r+lz+p] 4|5 p)
1 i w/\ A2
e T @ T (9o T (T | "
X \27P 2P 2 P 2 P
(q,w)=—2\(Q 1+q8@2®f Re: ! (A3)
P2 RCHEN Tre] 9y FEIEENE
2P x \27P 2 Pl |Tx27P
. ) L D”gZJ 1 1
(0, 0)=— Dqg? +2q NEC) . 7 p)
r+ §+p r+ E P
R ! A4
IR B I N SR | -
X l27P 2P 2 P 2 P

There are three one-loop diagrams that contribute to the three-point fulgtigfg, ). Here,q and w denote the wave
vector and frequency of the outgoing exterfideg. The vertex function is evaluated at symmetric incoming labej® and
—w/2 for the order parameter fields. Setting the external frequentty zero, we obtain

, n+2_ 1 1
I3s40,0=Da’g| 1-—¢ qu 2 2

(g+p)? 1

D

=2

+29If +p% (q+p)3[r+(g+p)2]+pi(r+p? Diq |
PR @RI AT e o) D §+p)

(A5)
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In the same notation, four one-loop graphs yield

q
(0.0 =\gfg| 1 n+2~f §+p 1
éSp ql = q - 3 u 2 a| 2
PoTHP 9+p r+ 9+p +p3(r+p?)
2 2
q a
=+
o 2P (q+p)?
90 Ta T (a0 D
— — — N2 a 2 2
5P| [T+ 5P| | T3P (@+p)r+(q+p)T]+ P
q a
=+
L[ ey 2" P 1
A 2 a 2 D
Prre g+p r+ g+p +p3(r+p?) p(r+p*)+ - (a+p)?
q \? q, \?
+~2Df (z‘p) 2"P
g9~ a 2 2
Np r+p? (4 q D
(E_I—p) r+ §+p +X E—p
1 1
| T T T + 57q T2 (A6)
a i a 2 a 2y, — | 2
(2+p |5 +p| [+p%(r+p%)  pir+p)+—| 5 p)

Finally, we need the four-point vertex functidrgss4q,0), for which there are ten one-loop Feynman diagrams. We merely
record the final result fog—0; after a little algebra, one arrives at

n+8 1 a 1 a
uf — +35%0 i S+ i
6 Jp(r+p?

D r+ D
Pprrrpt et | TP prrpt)

J
a_(fr?ssséq,oﬂq:o:)\U 1-

D 2 2 a
+3§2XJ ; D 2" ; D
" (r4+p?) | p(r+p?) + ;pz} P R+ p?
s o
= a 1 a )\
_3g?®J’ ’ D 2t : D * D
bR P e p(r+p%)+-p?  (r+p?)| p(r+p?)+ ;pz}
~4 D 2 1 a
_397_ P D 2+ P D
S ) pa(r+p2)+;p2} TP PR+ —p?
D
=2
P
N (A7)
D
(r+p%) p(r+p*) + ;pz}
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