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Nonequilibrium critical dynamics of the relaxational models C and D
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We investigate the critical dynamics of then-component relaxational models C and D, which incorporate the
coupling of a nonconserved and conserved order parameterS, respectively, to the conserved energy densityr,
under nonequilibrium conditions by means of the dynamical renormalization group. Detailed balance viola-
tions can be implemented isotropically by allowing for different effective temperatures for the heat baths
coupling to the slow modes. In the case of model D with conserved order parameter, the energy density
fluctuations can be integrated out, leaving no trace of the nonequilibrium perturbations in the asymptotic
regime. For model C with scalar order parameter, in equilibrium governed by strong dynamic scaling (zS

5zr), we find no genuine nonequilibrium fixed point either. The nonequilibrium critical dynamics of model C
with n51 thus follows the behavior of other systems with nonconserved order parameter wherein detailed
balance becomes effectively restored at the phase transition. Forn>4, the energy density generally decouples
from the order parameter. However, forn52 andn53, in the weak dynamic scaling regime (zS<zr) entire
lines of genuine nonequilibrium model C fixed points emerge to one-loop order, which are characterized by
continuously varying static and dynamic critical exponents. Similarly, the nonequilibrium model C with spa-
tially anisotropic noise andn,4 allows for continuously varying exponents, yet with strong dynamic scaling.
Subjecting model D to anisotropic nonequilibrium perturbations leads to genuinely different critical behavior
with softening only in subsectors of momentum space and correspondingly anisotropic scaling exponents.
Similar to the two-temperature model B~randomly driven diffusive systems! the effective theory at criticality
can be cast into an equilibrium model D dynamics, albeit incorporating long-range interactions of the uniaxial
dipolar or ferroelastic type.

DOI: 10.1103/PhysRevE.69.036113 PACS number~s!: 64.60.Ak, 64.60.Ht, 05.40.2a, 05.70.Jk
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I. INTRODUCTION

Analytical studies of dynamic critical phenomena in t
vicinity of a second-order phase transition usually rely o
coupled set of Langevin-type stochastic equations of mo
for the relevant slow variables, namely, the order param
and hydrodynamic modes associated with conservation l
@1#. Taking advantage of the separation of time scales
duced by critical slowing down, all remaining microscop
degrees of freedom are reduced to additive Gaussian w
noise terms in this description. In order to guarantee that
probability distribution for any configuration converge
to the canonical Gibbs function Peq(T)5Z(T)21

3exp(2H/kBT) at long times t→` ~with the effective
HamiltonianH usually taken to be the standardf4 model!,
the second moments of the stochastic forces must be re
to the relaxation rates via Einstein relations. In addition,
tegrability conditions constrain the reversible force terms
the nonlinear Langevin equations quite severely, for the
sociated probability currents in the space of the slow v
ables must be divergence free@2#. These two requirement
also ensure the validity of the equilibrium fluctuatio
dissipation theorem, which relates the imaginary part of
dynamic susceptibilities with the correlation functions. As
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consequence, the system’s static behavior can be sepa
from its dynamic properties.

In isotropic systems, there are normally two independ
static critical exponents, e.g.,n and h, which, respectively,
characterize the divergence of the correlation length u
approaching the transition,j;utu2n, wheret}T2Tc , and
govern the power-law decay of the two-point correlati
function atTc , C(uxu);uxu2(d221h) in d spatial dimensions.
These become supplemented by dynamic exponentsz that
describe the critical slowing down for the relevant mod
with characteristic relaxation times diverging astc;utu2zn.
At thermal equilibrium, the dynamic universality classes a
well understood, and known to be distinguished by ove
features of the dynamical system at hand. In addition to
order parameter symmetry, which essentially dictates
static critical exponents, the determining factors are, if
order parameter itself represents a conserved quantity or
the absence or presence of additional conservation laws,
the form of the reversible mode couplings between the g
eralized hydrodynamic variables, as again dictated by
symmetries of the problem@1#.

On the other hand, critical dynamics in systems far fro
thermal equilibrium is not subject to the stringent limitatio
imposed by the detailed balance constraints, and in fact c
not even always be adequately captured through coa
grained stochastic equations of motion@3#. Nevertheless,
several important situations have been successfully mod
by means of the Langevin formalism, two prominent e
©2004 The American Physical Society13-1
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amples being driven Ising lattice gases, or more gen
driven diffusive systems@4#, and nonequilibrium interface
growth models, such as captured by the Kardar-Parisi-Zh
~KPZ! equation and its variants@5#. Yet in nonequilibrium
circumstances one has to invoke heuristic and/or phen
enological arguments for choosing the mathematical form
the noise correlations. This must be done with appropr
care, however, since the structure of the stochastic fo
may crucially impact the universal scaling behavior@6#. It is
thus of vital importance to elucidate the influence of differe
forms of the assumed stochastic noise correlations on
long-distance and long-time properties of any nonequi
rium Langevin system under investigation.

Naturally, then the following question arises for th
Langevin models describing the equilibrium dynamical u
versality classes: What happens to their universal scaling
havior if the detailed balance conditions are violated? N
that since ‘‘static’’ properties cannot be decoupled from
dynamics in nonequilibrium steady states, this may inclu
novel static critical behavior as well in addition to perha
modified values for the dynamic exponentsz. The simplest
dynamical model just entails a purely relaxational kinet
for a nonconserved order parameter with no coupling
other conserved quantities. This defines model A in the~al-
phabetical! classification of Ref.@1#. Yet the model A univer-
sality class, such as, for example, realized in the kinetic Is
model with Glauber spin flip dynamics, is known to be e
tremely robust against nonequilibrium perturbations@7,8#.
For the kinetic Ising model, this remains true even when
order parameter up-down symmetry is broken@9#. Consider
the most straightforward situation where the order param
symmetry remains preserved, but the Einstein relation is
satisfied. Since there is only a single stochastic equatio
motion in this case, one can recover detailed balance thro
simple parameter rescaling which does not affect unive
properties at the phase transition@10#.

Remarkably, the situation is markedly different for th
purely diffusive relaxational critical dynamics of model
with conservedorder parameter~e.g., the kinetic Ising mode
with Kawasaki spin exchange processes!, but only when sub-
ject to spatiallyanisotropic noise, say with stronger nois
correlations in the thus defined longitudinal as compared
the complementary transverse sector in momentum spac
this effectivetwo-temperatureor randomly driven model B,
excitations in the transverse sector soften first, while the l
gitudinal directions remain noncritical@11–13#. This induces
inherent anisotropic scaling at the critical point, of the sa
form as those in driven lattice gases@4#. Interestingly, the
emerging long-wavelength dynamics in the critical regim
can be recast into an equilibrium model B, albeit with
effective Hamiltonian that incorporates long-range inter
tions of the uniaxial dipolar or ferroelastic type. These
duce both the lower critical dimension, allowing long-ran
order already in one dimension, as well as the upper crit
dimension todc542di , wheredi denotes the dimension o
the stiff longitudinal sector@11,12#. In Ref. @13#, the associ-
ated four independent critical exponents (n, h, z, and the
anisotropy exponentD! were computed to two-loop order i
thee expansion (e5dc2d) by means of the dynamic reno
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malization group~RG!, utilizing a path integral or dynamic
field theory representation of the Langevin equation@14#.

The equilibrium dynamical models C and D~in the termi-
nology of Ref.@1#! still describe purely relaxational dynam
ics for either a nonconserved~model C! or conserved~model
D! n-component order parameter fieldS, which is however
statically coupled to the conserved scalar energy densitr
@15#. Preserving theO(n) order parameter symmetry, th
lowest-order coupling is}rS2. As the energy density itsel
represents a noncritical variable entering the Hamilton
only quadratically, it can be integrated out exactly in t
partition functionZ(T) and the generating function for stat
correlations. This merely shifts the value of the fourth-ord
couplingu for the order parameter fluctuations, whence o
recovers the static critical exponents of theO(n) model.

The coupling to the scalar diffusive moder may, how-
ever, alter thedynamiccritical behavior. To one-loop order
three distinct scaling regimes emerge for model C with n
conserved order parameter, depending on the compo
numbern @15–17#: ~a! for Ising symmetry (n51), one finds
‘‘strong’’ scaling, i.e.,zS5zr521a/n, wherea denotes the
specific heat critical exponent;~b! the interval 2<n,4, for
which a.0, is characterized by ‘‘weak’’ scaling withzS
52(11a/nn)<zr521a/n; ~c! for n>4, wherea<0, the
Langevin equations for theS and r effectively decouple,
leaving purely diffusive behavior for the conserved mod
zr52, and the model A dynamic critical exponent for th

order parameter,zS521ch, with c56 ln 4
3211O(e54

2d). To higher orders in perturbation theory, these three
gimes essentially persist~yet there appear additional distinc
tions with respect to the corrections to the leading scal
laws!, but their boundaries become functions of the spa
dimensiond as well as ofn @16,17#. For model D with con-
served order parameter, the energy density always fluctu
faster in the critical region, rendering a strong-scaling regi
impossible. The order parameter dynamics is thus not
fected by the additional conservation law, and given by
model B dynamic critical exponentzS542h. Fora.0, one
finds againzr521a/n, whereaszr52 in the decoupled
case whena,0 @15#.

In this paper, we explore the effect of perturbations in t
stochastic force correlators that violate the equilibrium co
ditions on the critical dynamics of the relaxational models
and D. Specifically, we shall retain theO(n) order parameter
symmetry, but introduce different noise correlation streng
for the critical fluctuations and the conserved energy dens
respectively, amounting to unequal effective heat bath te
peraturesTS and Tr . We shall employ the dynamic RG t
one-loop order, and search for novel nonequilibrium fix
points of the ensuing RG flow equations. In addition, we w
investigate spatially anisotropic detailed balance violation

The critical dynamics at structural phase transitions and
anisotropic antiferromagnets are usually listed as poss
realizations of the model C universality class@1#. In the latter
case, the nonequilibrium system studied in this paper m
be accessible experimentally if the effective temperature
the conserved magnetization component~s! can be main-
tained at a value different from that of the staggered mag
3-2
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tization which constitutes the nonconserved order param
perhaps through constant exposure to electromagnetic ra
tion.

This work supplements earlier research that focused
nonequilibrium perturbations for dynamic universali
classes, which are characterized by reversible mode
plings, as relevant for second-order phase transitions in m
netic systems@10# ~models E, G, and J, respectively, for th
critical dynamics in planar ferromagnets, isotropic antifer
magnets, and Heisenberg ferromagnets! as well as in fluids
@18# ~model H for the liquid-gas transition critical point, o
more generally in binary fluids, and model E for the norm
to-superfluid phase transition!. Reference@19# provides a
concise summary of the results of these investigations~in-
cluding a subset of this present work!.

We finally remark that a recent study has addresse
nonlocalgeneralization of the equilibrium relaxational mo
els that allows interpolating between the scaling laws
models A, B, and C@20#. Intriguingly, also a ‘‘true model D’’
scaling regime emerges in this situation, where both the c
servation laws for the order parameter and the energy den
remain relevant in the RG sense.

This article is organized as follows. We start with a de
vation of the Langevin equations of motion from the effe
tive Hamiltonian for models C and D, and then provide
brief outline of the construction of field theory and the pe
turbation expansion based on the dynamic action~the
Janssen–De Dominicis functional@14#!. Prior to describing
the results of the explicit perturbation expansion, the eff
of the static nonlinear coupling of the order parameter to
conserved energy density is gauged by integrating the c
served field out of the dynamic action. The implications
this, namely, the reduction of the isotropic nonequilibriu
model D to its equilibrium counterpart is discussed. Sub
quently, the full renormalization of the vertex functions~cal-
culated to one-loop order! is detailed and the expressions f
the resulting renormalization constants are presented. F
theseZ factors we obtain the RG flow equations, and the
from calculate the static and dynamic critical exponents fi
in equilibrium, and then successively allowing for isotrop
violation of detailed balance in both models D and C. TheZ
factors are then adapted for the case of dynamical anisot
in model C; its fixed point and critical behavior is explaine
Finally, following earlier work on the two-temperature mod
B @11#, the anisotropic nonequilibrium model D is recast in
an effective two-temperature model D with anisotropic sc
ing properties. We conclude with a brief summary, putti
our results into context with earlier investigations. An appe
dix lists the explicit expressions for the one-loop vertex fun
tions.

II. THE RELAXATIONAL MODELS C AND D

In this section, we outline the basic model equations
the nonequilibrium generalization of the relaxational mod
C and D. As introduced in Ref.@15#, these models are cha
acterized by an-component vector order parameterS
[$Sa%, a51, . . . ,n, coupled to a scalar conserved fieldr.
The effective Hamiltonian that describes their equilibriu
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static critical properties is theO(n)-symmetricf4 Landau-
Ginzburg-Wilson free energy ind space dimensions, with
additional terms for the noncritical conserved field and
coupling to the order parameter. Preserving theO(n) rota-
tional invariance requires the lowest-order coupling tor to
be quadratic inS. For models C and D, the Hamiltonian thu
reads

H@S,r#5E ddxH (
a51

n F r

2
Sa~x!21

1

2
@“Sa~x!#21

u

4!

3 (
b51

n

Sa~x!2Sb~x!21
g

2
r~x!Sa~x!2G1

1

2
r~x!2J .

~2.1!

Here r 5(T2Tc
o)/Tc

o denotes the relative distance from th
mean-field critical temperatureTc

o , and we have rescaled th
static energy density correlation function, i.e., essentially
specific heat to unity.u andg represent the nonlinear inter
action strengths. The Hamiltonian~2.1! determines the equi
librium probability distribution for the fields$Sa% andr,

Peq@S,r#5
exp~2H@S,r#/kBT!

E D@S#D@r#exp~2H@S,r#/kBT!

~2.2!

and furthermore provides the starting point for the fie
theoretic static renormalization group via a series expans
in the nonlinear couplingsu andg, which allows for a sys-
tematic computation of the two independent static criti
exponentsh and n in powers of e542d. Note that the
energy density fluctuationsr enter the Hamiltonian~2.1!
only linearly and quadratically, and can thus be readily in
grated out. This merely results in a shift of the nonline
coupling u→ū5u23g2. Provided the latter remains pos
tive, this does not affect the RG fixed pointu* , whence the
static critical exponents are clearly those of the stand
O(n)-symmetricf4 model.

We now impose Langevin dynamics on the fluctuations
the order parameter and the conserved field to describe
relaxation of the system to equilibrium~at which the station-
arity conditionsdH@S,r#/dSa50 andd H@S,r#/dr50 hold!.
The purely relaxational model C/D dynamics is then giv
by the equations of motion

]Sa~x,t !

]t
52l~ i“ !a

dH@S,r#

dSa~x,t !
1za~x,t !, ~2.3!

]r~x,t !

]t
5D“

2
dH@S,r#

dr~x,t !
1h~x,t !. ~2.4!

Herel andD denote the relaxation coefficients of the ord
parameter and energy density, respectively~i.e., D is essen-
tially the heat conductivity!. The distinction between model
C and D is the value of the exponenta. For model C,a50
corresponding to anonconservedorder parameter field
while for model D,a52, representing the diffusive relax
3-3



e
fic

rt

th

a

W
ith

re
th

h
u
tri
-
e
rv

h
rly
r
, a
io
e

er

loop

al

of
om

a

ba-

igh
-
ian
al.
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ation of a conservedorder parameter. With the effectiv
Hamiltonian~2.1!, the equations of motion take the speci
form

]Sa~x,t !

]t
52l~ i“ !aF ~r 2¹2!Sa~x,t !

1
u

6
Sa~x,t !(

b
Sb~x,t !21gr~x,t !Sa~x,t !G

1za~x,t !, ~2.5!

]r~x,t !

]t
5D“

2Fr~x,t !1
g

2 (
a

Sa~x,t !2G1h~x,t !.

~2.6!

Upon reinstating the specific heat, note that the linear pa
Eq. ~2.6! implies tc

21;Dutuaq2. Invoking dynamic scaling
then suggeststc;utu22n2a, i.e., zr521a/n for the dy-
namic exponent of the energy density. We shall see that
relation in fact holds only forn,4, or more precisely, when
a.0, for otherwise the two Langevin equations decouple
criticality.

In the above stochastic equations of motion~2.5! and
~2.6!, za andh represent the stochastic forces~noise! for the
order parameter and the conserved field, respectively.
assume a Gaussian distribution for these fast variables w
vanishing temporal average,^za&505^h&. Their second
moments then take the functional form

^za~x,t !zb~x8,t8!&52l̃~ i“ !ad~x2x8!d~ t2t8!dab,

~2.7!

^h~x,t !h~x8,t8!&522D̃“

2d~x2x8!d~ t2t8!. ~2.8!

In thermal equilibrium, Einstein relations connect the
laxation coefficients with the corresponding noise streng
according tol̃5lkBT and D̃5DkBT, whereT is the tem-
perature of the heat bath in contact with the system. T
detailed balance conditions implicit in these relations ens
that the system relaxes to the equilibrium probability dis
bution ~2.2! in the limit t→`. More generally, we can iden
tify l̃/l5kBTS and D̃/D5kBTr as the temperatures of th
heat baths coupling to the order parameter and the conse
density, respectively, with their ratio given by

Q5
Tr

TS
5

D̃

D

l

l̃
. ~2.9!

This new degree of freedomQ describes the extent to whic
the equilibrium condition is violated; detailed balance clea
holds forQ51, while for Q,1 energy flows from the orde
parameter heat bath to the conserved density heat bath
vice versa forQ.1. Since we are interested in the behav
near the critical pointTS'Tc , Q essentially measures th
temperature of the conserved density heat bathTr , in units
of the critical temperatureTc . In the critical regime, we will
be interested in calculating the dynamic exponentszS and
zr , which describe the critical slowing down for the ord
03611
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parameter and the conserved energy density. The one-
RG flow equations for this case ofisotropicdetailed balance
violation are derived in Sec. III. The assumed function
form for the noise correlations, Eqs.~2.7! and ~2.8!, also
enables us to impose aspatially anisotropicform of detailed
balance violation, as described in Sec. IV.

We close this general introduction with a brief outline
how a field theory representation can be constructed fr
general Langevin-type equations of the form

]ca~x,t !

]t
5Ka@$ca%#~x,t !1za~x,t ! ~2.10!

with ^za&50, and the general noise correlations

^za~x,t !zb~x8,t8!&52Lad~x2x8!d~ t2t8!dab.
~2.11!

This form of the white noise may be inferred from
Gaussian distribution for the stochastic forces

W@$za%#}expF2
1

4E ddxE dt(
a

za~La!21zaG .
~2.12!

Eliminating za via Eq. ~2.10! immediately yields the de-
sired probability distribution for the fieldsca,

W@$za%#D@$za%#5P@$ca%#D@$ca%#}eG[ $ca%]D@$ca%#,
~2.13!

with the Onsager-Machlup functional

G@$ca%#52
1

4E ddxE dt(
a

S ]ca

]t
2Ka@$ca%# D

3~La!21S ]ca

]t
2Ka@$ca%# D . ~2.14!

From this functional, one can already construct a pertur
tion expansion for the correlation functions of the fieldsca;
however, since the inverse of the Onsager coefficientLa is
singular for the conserved quantities, and furthermore h
nonlinearities}Ka@$ca%#2 appear, it is convenient to intro
duce Martin-Siggia-Rose auxiliary fields via a Gauss
transformation to partially linearize the above function
This leads to

P@$ca%#}E D@$ i c̃a%#exp~2A@$c̃a%,$ca%#! ~2.15!

with the Janssen–De Dominicis functional@14#

A@$c̃a%,$ca%#5E ddxE dt

3(
a

F2c̃aLac̃a1c̃aS ]ca

]t
2Ka@$ca%# D G .

~2.16!
3-4
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Equation~2.16! will provide the starting point for our discus
sion of the nonequilibrium dynamics of models C/D. In Se
III, we will use the corresponding Janssen–De Domini
functional for the construction of dynamic perturbatio
theory, and therefrom infer the one-loop RG flow equatio
first in equilibrium and then with broken detailed balanc
Subsequently in Sec. IV, we will repeat the procedure for
models with anisotropic detailed balance violation.

III. THE ISOTROPIC NONEQUILIBRIUM
MODELS C AND D

In this section, we will study the nonequilibrium critica
properties of the relaxational models C and D with isotro
violation of detailed balance. Along the way, we shall a
recover the equilibrium critical exponents. The field theory
constructed as outlined in the preceding Sec. II, and a
turbation series expansion in the relevant nonlinear coupl
}u andg2 is developed for the one-particle irreducible ve
tex functions, explicitly here to one-loop order. The sub
quent renormalization constitutes a straightforward gene
zation of the equilibrium renormalization scheme, see R
@16#. From the renormalization constants (Z factors! that ren-
der the field theory finite in the ultraviolet~UV!, we derive
the RG flow functions which enter the Callan-Symanz
equation. This partial differential equation describes the
havior of the correlation functions under scale transform
tions. In the vicinity of a RG fixed point, the theory becom
scale invariant and the information from the UV behav
can be employed to access the physically interesting po
laws governing the infrared~IR! regime at the critical point
(t}T2Tc→0), for long wavelengths~q→0! and at low fre-
quencies~v→0!.

A. Dynamic field theory for models C and D

As a first step, we translate the Langevin equations~2.5!
and ~2.6!, with the noise correlations~2.7! and ~2.8!, to a
dynamic field theory@14,16#. This results in a probability
distribution for the dynamic fieldsS andr:

P@S,r#}E D@$ iS̃a%#E D@ i r̃ #exp~2A@S̃,S,r̃,r#!,

~3.1!

with the statistical weight given by the Janssen–De Dom
cis functionalA5Ahar1Arel1Acd. The harmonic part, in
terms of the original dynamic fieldsSa andr, and the cor-
responding auxiliary fieldsS̃a and r̃, reads

Ahar@S̃,S,r̃,r#5E ddxE dtS (
a

S̃a~x,t !F]Sa~x,t !

]t

1l~ i“ !a~r 2“

2!Sa~x,t !

2l̃~ i“ !aS̃a~x,t !G1 r̃~x,t !F]r~x,t !

]t

2D“

2r~x,t !1D̃“

2r̃~x,t !G D , ~3.2!
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while the static nonlinearity leads to a relaxation vertex,

Arel@S̃,S#5
u

6E ddxE dt(
a,b

S̃a~x,t !

3@l~ i¹!aSb~x,t !2#Sa~x,t !, ~3.3!

and the coupling between the order parameter and the
served density generates the model C/D vertices

Acd@S̃,S,r̃,r#5gE ddxE dt

3(
a

F S̃a~x,t !l~ i“ !ar~x,t !Sa~x,t !

2 r̃~x,t !D“

2
1

2
Sa~x,t !2G . ~3.4!

Before we proceed to develop the perturbation expans
based on the above dynamic functional, we can try to ga
the relevance of the nonequilibrium parameterQ, as defined
in Eq. ~2.9!, by integrating out the conserved densityr from
the action. Denoting those terms in the total dynamic act
A@S̃,S,r̃,r# that involve only the order parameter and th
corresponding auxiliary fields asA@S̃,S#, and subtracting
this part, we are, in Fourier space, left with

A@ r̃,r#5A@S̃,S,r̃,r#2A@S̃,S#

5E ddq

~2p!dE dv

2p H r̃~2q,2v!F ~2 iv1Dq2!

3r~q,v!2D̃q2r̃~q,v!1Dq2
g

2
S2~q,v!G

1r~q,v!lqag@S̃•S#~2q,2v!J , ~3.5!

where we have introduced the composite operators

S2~q,v!5E ddp

~2p!dE dn

2p (
a

Sa~p,n!Sa~q2p,v2n!,

~3.6!

@S̃•S#~q,v!5E ddp

~2p!dE dn

2p (
a

S̃a~p,n!Sa~q2p,v2n!

~3.7!

as Fourier convolutions.
The path integral over the fieldsr and r̃ now takes the

form, in matrix notation,
3-5
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E D@ i r̃ #E D@r#exp~2A@ r̃,r#!

5)
q,v

E D@ ix1#D@x2#expS 2
1

2
xTA x2bTxD ,

~3.8!

with the vectors

x5F r̃~q,v!

r~q,v!
G , b5F Dq2gS2~q,v!/2

lqag@S̃•S#~q,v!
G , ~3.9!

and the Hermitian matrix

A5F 22 D̃q2 2 iv1Dq2

iv1Dq2 0
G5A†. ~3.10!

After the linear transformationy5x1A21 b, the integral
~3.8! becomes

E D@ iy1#D@y2#expS 2
1

2
yTA yDexpS 1

2
bTA21 bD ,

~3.11!

where the entries of the inverse matrix

A215F 0 ~ iv1Dq2!21

~2 iv1Dq2!21 2 D̃q2/~v21D2q4!
G

~3.12!

actually represent the propagators for the scalar conse
field r. Upon performing the Gaussian integration over thy
fields, ther andr̃ fields are integrated out to yield the effe
tive dynamic functional

Aeff@S̃,S#5A@S̃,S#1E ddq

~2p!dE dv

2p
lqa g2@S̃•S#~2q,2v!

3F S2~q,v!/2

12 iv/Dq2
1

l

D

D̃qa@S̃•S#~q,v!/Dq2

11~v/Dq2!2 G .

~3.13!

We now define the parameter

w5D/l, ~3.14!

which essentially measures the ratio of relaxation times
the order parameter and the conserved field, i.e.,w
;tS /tr . For model D (a52) at criticality, the relaxation
time of the conserved order parameter field is much lon
~since]Sa/]t;q4) compared to that of the conserved fie
~since]r/]t;q2), so thatw→` asq→0. Hence the second
term in the brackets in the above effective functional~which
contains the ratioD̃/D) vanishes asymptotically. Conse
quently, the nonequilibrium parameterQ disappears from the
effective field theory~3.13! entirely, and a simple rescalin
of the nonlinear couplingsu and g reduces model D with
isotropic detailed balance violation to its equilibrium cou
03611
ed

f

r

terpart. This remarkable result will be borne out in the e
plicit one-loop perturbation theory as well, see Sec. III D.

B. Perturbation theory and renormalization

1. Elements of dynamic perturbation theory

We first detail the dynamic field theory for the case
isotropic detailed balance violation for both models C and
The harmonic part~3.2! defines the~bare! propagators of the
field theory, while the perturbation expansion is performed
terms of the nonlinear vertices~3.3! and ~3.4!. Note that the
existence of the irreversible forces~3.4! does not show up in
dynamic mean-field theory~van Hove theory! at all, which is
based on the harmonic action~3.2! only.

We can now construct the perturbation expansion for
possible correlation functions of the dynamic and auxilia
fields, to be computed with the statistical weig
exp(2A@S̃,S,r̃,r#), as well as for the associated verte
functions given by the one-particle irreducible Feynman d
grams. A straightforward scaling analysis yields that the
per critical dimension of this model isdc54 for the relax-
ational vertices~3.3! and ~3.4!. Therefore, ford<4 the
perturbation theory will be IR singular, and nontrivial critic
exponents will result, whereas ford>4 the perturbation
theory contains UV divergences. In order to renormalize
field theory in the ultraviolet, it suffices to render all th
nonvanishing two-, three-, and four-point functions finite
introducing multiplicative renormalization constants~in ad-
dition to an additive renormalization that amounts to
fluctuation-induced shift of the critical temperature!. This is
achieved by demanding the renormalized vertex functions
appropriate momentum and frequency derivatives thereo
be finite when the fluctuation integrals are taken at a con
niently chosen normalization pointm, well outside the IR
regime. Note thatm defines an intrinsic momentum scale
the renormalized theory. The Callan-Symanzik equations
subsequently be used to explore the dependence of therenor-
malizedvertex functions onm, and thereby obtain informa
tion on the scaling behavior of the dynamic correlation a
response functions.

The Gaussian~zeroth-order! propagators

GS̃aSb
0

~q,v!5G S̃aSb
0

~2q,2v!21, ~3.15!

Gr̃r
0 ~q,v!5Gr̃r

0 ~2q,2v!21, ~3.16!

and vertices which are the starting point for perturbat
theory are

G S̃aSb
0

~q,v!5@ iv1l qa~r 1q2!#dab, ~3.17!

Gr̃r
0 ~q,v!5 iv1Dq2, ~3.18!

G S̃aS̃b
0

~q,v!52l̃ qadab, ~3.19!

Gr̃r̃
0 ~q,v!52D̃q2, ~3.20!

G S̃aSbr
0

~q,v!52l qagdab, ~3.21!
3-6
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Gr̃SaSb
0

~q,v!52 1
2 D q2g dab, ~3.22!

G S̃aSaSbSb
0

~q,v!52lqa
u

6
. ~3.23!

In addition to the previously introduced ratio of relaxatio
timesw and the nonequilibrium parameterQ, we define for
convenience the rescaled static couplings

ũ5
l̃

l
u, g̃25

l̃

l
g2. ~3.24!

Recall thatQ is a measure of the extent to which detail
balance is violated, since forQ51 a straightforward rescal
ing of the couplings reduces the dynamic functional~3.2!–
~3.4! to the equilibrium case.

2. Vertex function renormalization

The explicit expressions for the relevant vertex functio
to one-loop order in the perturbation expansion are given
the Appendix. The ultraviolet-divergent derivatives of t
two-, three-, and four-point vertex functions that requ
multiplicative renormalization are ]qaG S̃S(q,0)uq50 ,
]q21aG S̃S(q,0)uq50 , ]vG S̃S(0,v)uv50 , ]q2Gr̃r(q,0)uq50 ,
]vGr̃r(0,v)uv50 , ]qaG S̃S̃(q,0)uq50 , ]q2Gr̃r̃(q,0)uq50 ,
]qaG S̃Sr(q,0)uq50 , ]q2Gr̃SS(q,0)uq50, and
]qaG S̃SSS(q,0)uq50. The quadratic divergence in the first o
these will be taken care of by theTc shift r c . The remainder
as well as all the other expressions are logarithmically div
gent at the upper critical dimensiondc54. We thus require
ten multiplicative renormalizations in all, which we take
define the renormalized counterparts of the fieldsS̃, S, r̃,
and r, and of the parametersD, D̃, l, l̃, u, g, and t5r
2r c , which represents the temperature distance from
true critical temperature. The renormalized quantities are
fined through

SR
a5ZS

1/2Sa, S̃R
a5ZS̃

1/2
S̃a, ~3.25!

rR5Zr
1/2r, r̃R5Zr̃

1/2r̃, ~3.26!

tR5Zttm22, lR5Zll, l̃R5Zl̃l̃, ~3.27!

DR5ZD D, D̃R5ZD̃D̃, ~3.28!

uR5Zuu Ad m2e, gR
25Zgg2 Ad m2e, ~3.29!

where in standard notation

e542d, and Ad5
G~32d/2!

2d21pd/2
. ~3.30!

The loop integrals are evaluated in the dimensional regu
ization scheme, and we choose the renormalized mastR

51 as our normalization point~i.e., t5m2Zt
21'm2, to low-

est order!. Note that as we have thus defined 11 renormali
tion constants (Z factors!, but actually only need 10 multi
03611
s
in

r-

e
e-

r-

-

plicative renormalizations, we shall have the freedom
choose, say,l̃R5lR . As l̃5l can be achieved throug
simple rescaling in the unrenormalized theory, this impl
the choice Zl̃5Zl . In addition, the structure of the pertu
bation series implies nontrivial additionalidentitiesbetween
the renormalization constants, as we shall see below.

We now proceed to compute the renormalization fact
by absorbing the UV divergences of the loop integrals f
lowing the minimal subtraction prescription. All subseque
explicit one-loop results are for the case of model Ca
50). However, as we have seen at the end of Sec. III A,
separation of relaxation time scales for the order param
and the conserved density in model D leads tow→` in the
asymptotic limit. It turns out that taking this limit for the
model C results precisely yields theZ factors for model D.
An independent calculation of theZ factors from the model
D vertex functions confirms the validity of this simple lim
procedure.

First, we employ the criticality conditionx(0,0)21

5G S̃S(0,0)/l50 at the true critical pointr 5r c , and solve
for the fluctuation-inducedTc shift,

r c52
n12

6
~ ũ23g̃2!E

p

1

r c1p2

2g̃2
12Q

11wE
p

1

r c /~11w!1p2
. ~3.31!

We may then reparametrizeG S̃S(0,0) in terms oft5r 2r c ,
which amounts to an additive renormalization,

G S̃S~0,0!5ltF12
n12

6
~ ũ23g̃2!E

p

1

p2~t1p2!

2g̃2
12Q

~11w!2 Ep

1

p2@t/~11w!1p2#
G .

~3.32!

Writing this result in terms of renormalized quantities, a
evaluating the integrals at the normalization pointt5m2 in
dimensional regularization, we obtain the following expre
sion for the product of theZ factors

~ZS̃ZS!1/2ZlZt512Fn12

6
~ ũ23g̃2!1g̃2

12Q

~11w!2GAdm2e

e
.

~3.33!

Next, expanding the integrands in the expression
G S̃S(q,v) to orderq2 to obtain the renormalization factor fo
the relaxation ratel, we find
3-7
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]

]q2
G S̃S~q,0!uq505lF12

g̃2

4

12Q

11wE
p

1

@t/~11w!1p2#2

1
g̃2

d

~12Q!~12w!2

~11w!3

3E
p

p2

@t/~11w!1p2#3G , ~3.34!

whence

~ZS̃ZS!1/2Zl512
g̃2

4

12Q

11w F12
~12w!2

~11w!2GAdm2e

e
.

~3.35!

Another product ofZ factors is obtained from

]

]~ iv!
G S̃S~0,v!uv5051

1
g̃2

11w E
p

1

~t1p2!@t/~11w!1p2#

2g̃2
12Q

~11w!2Ep

1

@t/~11w!1p2#2
,

~3.36!

which gives

~ZS̃ZS!1/2511
g̃2

11w F12
12Q

11w G Adm2e

e
. ~3.37!

Now consider the two-point vertex functionGr̃r(q,v) for
the conserved density. Because any loop diagram for
quantity necessarily involves ar̃SSvertex for its outgoing
leg, we see that takingq→0 results inGr̃r(0,v)[ iv to all
orders in the perturbation expansion. As a consequence

Zr̃Zr[1. ~3.38!

Upon absorbing the logarithmic divergence of

Gr̃r~q,0!5Dq2F12
n

2
g̃2E

p

1

~t1p2!2
1O~q4!G

~3.39!

into ZD , we arrive at

ZD512
n

2
g̃2

Adm2e

e
. ~3.40!

The vertex functionGr̃r̃(q,v) is actually UV finite to all
orders. Again from the momentum dependence of ther̃SS

vertex,]q2Gr̃r̃(q,0)uq50[22D̃, whence

Zr̃ZD̃[1, ~3.41!

and with Eq.~3.38! therefore
03611
is

ZD̃[Zr . ~3.42!

The remaining logarithmically divergent two-point functio

G S̃S̃~0,0!522l̃F11g̃2
Q

11wEp

1

~t1p2!@t/~11w!1p2#
G

~3.43!

yields the relation

ZS̃Zl̃511g̃2
Q

11w

Adm2e

e
. ~3.44!

At last, from the rather lengthy one-loop results~A5!–
~A7! for the three- and four-point vertex functions we d
duce, respectively,

ZS~Zr̃Zg!1/2ZD512
n12

6
ũ

Adm2e

e
1g̃2F12

12Q

11w GAdm2e

e
,

~3.45!

~ZS̃ZSZrZg!1/2Zl512
n12

6
ũ

Adm2e

e

1g̃2F12
12Q

~11w!2GAdm2e

e
,

~3.46!

~ZS̃ZS!1/2ZSZlZu512
n18

6
ũ

Adm2e

e

16g̃2F12
~12Q!~21w!

2~11w!2 GAdm2e

e

2
6g̃4

ũ
F12

12Q

11w GAdm2e

e
. ~3.47!

Upon factoring from the aboveZ factor products~3.33!,
~3.35!, ~3.37!, ~3.40!, and ~3.45!–~3.47!, the following re-
sults are obtained:

Zt512
n12

6
ũ

Adm2e

e
1g̃2Fn12

2
2

12Q

~11w!3GAdm2e

e
,

~3.48!

Zl512
g̃2

11w F12
12Q

~11w!2G Adm2e

e
, ~3.49!

ZSZr
21511g̃2Fn

2
2~12Q!

w~21w!

~11w!3 G Adm2e

e
,

~3.50!
3-8
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ZS~Zr
21Zg!1/2512

n12

6
ũ

Adm2e

e

1g̃2Fn12

2
2

12Q

11w GAdm2e

e
, ~3.51!

~ZrZg!1/2512
n12

6
ũ

Adm2e

e
1g̃2F12

12Q

~11w!3GAdm2e

e
,

~3.52!

ZSZg512
n12

3
ũ

Adm2e

e

1g̃2Fn14

2
2~12Q!

212w1w2

~11w!3 GAdm2e

e
,

~3.53!

ZSZu512
n18

6
ũ

Adm2e

e
1g̃2F62

12Q

11w S 3~21w!

11w

2
w

~11w!2D GAdm2e

e
2

6g̃4

ũ
F12

12Q

11w GAdm2e

e
,

~3.54!

supplementing Eqs.~3.37!, ~3.38!, ~3.40!, ~3.41!, ~3.42!, and
~3.44!.

For model D (a52), the ratio of relaxation timesw con-
stitutes a relevant parameter in the RG sense, whencw
→` asymptotically. Obviously, this leads to marked simp
fications in the above expressions for the renormaliza
constants. In addition, as a consequence of the order pa
eter conservation law and the ensuing momentum dep
dence of the vertices, we haveG S̃S(0,v)[ iv and
]q2G S̃S̃(q,0)uq50[22l̃ to all orders in perturbation theory
which implies the relationsZS̃ZS[1, ZS̃Zl̃[1, and thus
Zl̃[ZS , which also follow to one-loop order from Eqs
~3.37! and ~3.44!, respectively.

3. Callan-Symanzik and RG flow equations

By means of the above renormalization constants, we
now write down the Callan–Symanzik RG equations for
vertex functions and the dynamic susceptibilities, which
scribe the dependence on the renormalization scalem, and
thus on the renormalized couplings. These RG equat
connect the asymptotic theory, where the IR singularities
come manifest, with a region in parameter space where
loop integrals are finite and ordinary ‘‘naive’’ perturbatio
expansion is applicable. They follow from the observati
that the ‘‘bare’’ vertex functions do not depend on the ren
malization scalem,

m
d

dm U
0

G S̃mr̃nSrrs
~$q,v%;$a%!50, ~3.55!
03611
n
m-
n-

n
e
-

ns
e-
he

-

where$a% represents the parameter setu, g2, D̃, D, l̃, l, and
t. Replacing the bare parameters and fields in Eq.~3.55!
with the renormalized ones, we find the following parti
differential equations for the renormalized vertex function

Fm
]

]m
1 (

$aR%
gaaR

]

]aR
1

m

2
g S̃1

n

2
gr̃1

r

2
gS1

s

2
grG

3GR
S̃mr̃nSrrs

~$q,v%;$aR%!50. ~3.56!

Here, we have introduced Wilson’s flow functions

g S̃5m
]

]m U
0

ln ZS̃ , gS5m
]

]mU
0

ln ZS , ~3.57!

gr̃5m
]

]m U
0

ln Zr̃ , gr5m
]

]mU
0

ln Zr ~3.58!

for the fields and

ga5m
]

]m U
0

ln
aR

a
~3.59!

for the different parameters~the subscript ‘‘0’’ indicates that
the renormalized fields and parameters are to be express
terms of their bare counterparts prior to taking the deri
tives with respect to the momentum scalem!.

The Callan-Symanzik equations~3.56! are solved by the
method of characteristics, introducingm̂(,)5m,, where, is
a real continuous parameter. This defines running coupli
as the solutions to the first-order differential RG flow equ
tions

,
dâ~, !

d,
5ga~, !â~, ! with â~1!5aR . ~3.60!

The solutions of the partial differential equations~3.56! then
read

GR
S̃mr̃nSrrs

~m,$q,v%;$aR%!

5expS E
1

, d,8

,8
Fm

2
g S̃~,8!1

r

2
gS~,8!1

n

2
gr̃~,8!

1
s

2
gr~,8!G D ĜR

S̃mr̃nSrrs
~m,,$q,v%;$â~, !%!.

~3.61!

C. Models C and D equilibrium critical exponents

To begin the analysis of the RG flow equations, we
cover the critical exponents for the equilibrium models C a
D ~see the original Refs.@15# and@16# for the corresponding
field theory; the two-loop analysis was recently clarified
Ref. @17#!. Upon removing the effects of the nonequilibriu
perturbation by settingl̃5l and D̃5D ~we may putkBT
'kBTc51), whenceQ51, ũ5u, andg̃25g2 in the preced-
3-9
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ing expressions for theZ factors, we obtain the renormaliza
tion constants for the equilibrium case to one-loop order

Zr5Zr̃
215ZD512

n

2

g2Adm2e

e
, ~3.62!

ZS51, ~3.63!

ZS̃
21/2

5Zl512
1

11w

g2Adm2e

e
, ~3.64!

Zt512
n12

6

uAdm2e

e
1

n12

2

g2 Adm2e

e
, ~3.65!

Zg512
n12

3

u Adm2e

e
1

n14

2

g2 Adm2e

e
, ~3.66!

Zu512
n18

6

u Adm2e

e
16S 12

g2

u D g2 Adm2e

e
.

~3.67!

In this equilibrium system, there exists a fluctuatio
dissipation relation that relates the imaginary part of the
namic order parameter susceptibilityx~q,v! to the Fourier
transform of the dynamic correlation functionC(x2x8,t
2t8)dab5^Sa(x,t)Sb(x8,t8)&:

C~q,v!5
2kBT

v
Im x~q,v!. ~3.68!

These quantities are connected to the two-point vertex fu
tions via C(q,v)52G S̃S̃(q,v)/uG S̃S(q,v)u2, and x(q,v)
5lqa/G S̃S(2q,2v); thus the fluctuation-dissipation theo
rem results in the following relation between the two-po
vertex functions

G S̃S̃~q,v!5
2l̃

v
Im G S̃S~q,v!. ~3.69!

The same identity must hold in the renormalized theo
Consequently

Zl[~ZS /ZS̃!1/2, ~3.70!

and in the same manner for the conserved field

ZD[~Zr /Zr̃ !1/2. ~3.71!

Both relations are indeed fulfilled by the above explicit on
loop results. Through taking logarithmic derivatives with r
spect to the normalization scalem, one finds that the equilib
rium fluctuation-dissipation theorem implies

2gl[gS2g S̃ and 2gD[gr2gr̃ . ~3.72!

The explicit RG flow functions derived from the one-loo
renormalization constants become

gS50, gl52
g S̃

2
5

gR
2

11wR
, ~3.73!
03611
-
-

c-

t

.

-
-

gr52gr̃5gD5
n

2
gR

2 , ~3.74!

gt5221
n12

6
ūR . ~3.75!

In the result for the single nontrivial static RG flow functio
~3.75! to one-loop order,ūR5uR23gR

2 represents the shifted
coupling that also results from directly integrating out t
scalar densityr, see Sec. II. Indeed, from Eqs.~3.66! and
~3.67! we infer itsZ factor

Zū512
n18

6

ūAdm2e

e
, ~3.76!

which along with Eq.~3.75! is just the standard one-loo
result for the O(n)-symmetric f4 theory. Note that for
model D, takingwR→` in Eq. ~3.73! yields gl50.

We are now in a position to study the scaling behavior
the vicinity of the various RG fixed points which are give
by the zeros of the RGb functions

ba5gaaR5m
]

]m U
0

aR ~3.77!

for the nonlinear couplingsū andg2 as well as the relaxation
rate ratiow, bw5wR (gD2gl). By means of Eqs.~3.62!,
~3.64!, ~3.66!, and~3.76!, we find

b ū5ūRF2e1
n18

6
ūRG , ~3.78!

bg5gR
2F2e1

n12

3
ūR1

n

2
gR

2 G , ~3.79!

bw5wRgR
2Fn

2
2

1

11wR
G . ~3.80!

For model C, the flow functionbw yields three fixed points,
providedg* 2.0, namely,w0* 50, wC* 5(2/n)21 ~which is
positive for 0,n,2), andwD* 5`. Stability requires that

]bw

]wR
5gR

2Fn

2
2

1

~11wR!2G ~3.81!

be positive at the fixed point. Consequently, forn51 we find
that wC* 51 is stable, whereasw0* 50 for n>2. Recall that
wD* 5` corresponds to model D; this fixed point is unstab
in model C for all values ofn.

For the static couplingūR we find the following zeros of
b ū : the Gaussian fixed pointu0* 50, and the Heisenberg
fixed point uH* 56e/(n18). Inserting these in turn into the
flow function bg , we obtain:g0*

250 andg1*
252e/n corre-

sponding tou0* 50; g0*
250 and gC*

252(42n)e/n(n18)
corresponding touH* . The stability of these four fixed point
in the (ūR ,gR

2) plane depends on the spatial dimensiond and
the number of order parameter componentsn. Checking for
3-10
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positivity of the eigenvalues of the stability matr
with the entries]b ū /]ūR52e1(n18)ūR/3, ]b ū /]gR

250,
]bg /]ūR5(n12)gR

2/3, and ]bg /]gR
252e1(n12)ūR/3

1ngR
2 at these RGb function zeros, we find that fore.0

(d,dc54) theonly stable fixed points to one-loop order a
@uH* ,gC*

2#, stable for 0,n,4, and@uH* ,g0*
2#, stable forn

>4.
The solutions of the RG equations~3.61! yield for the

order parameter susceptibility and correlation function in
vicinity of an IR-stable fixed point the scaling laws

x~t,q,v!5q222gS* x̂~tqgt* ,v/q21a1gl
* !, ~3.82!

C~t,q,v!5q242a2gl
* 2gS* Ĉ~tqgt* ,v/q21a1gl

* !.
~3.83!

Settingv50 in Eq. ~3.82!, we identify the static critical ex-
ponents

h52gS* 50, ~3.84!

n2152gt* 522
n12

n18
e, ~3.85!

with their one-loop values computed at the Heisenberg fi
point uH* . The standard hyperscaling relation then gives
the critical exponent of the specific heat

a522d n5
42n

2~n18!
e. ~3.86!

Therefore, we may rewrite

gC*
25

4

n
a5

2

n

a

n
~3.87!

to this order ine542d. The dynamical critical exponent
zS and zr that describe the divergence of the characteri
relaxation times for the order parameter and the conse
density, respectively, are given by

zS521a1gl* , ~3.88!

zr521gD* . ~3.89!

For model C (a50) with nonconserved order paramete
we thus havethreeequilibrium scaling regimes@15–17#: ~a!
In the first regime withn51 ~Ising symmetry!, the stable
critical one-loop fixed point is

uH* 5
2e

3
, gC*

25
2e

3
, wC* 51. ~3.90!

This describes astrong scaling regime where the dynam
exponents for the order parameter and the conserved field
identical,

zS5zr521
e

3
521

a

n
. ~3.91!
03611
e

d
r

c
ed

,

are

~b! In the second regime with 2<n,4, the stable critical
fixed point becomes

uH* 5
6e

n18
, gC*

25
2~42n!e

n~n18!
, w0* 50, ~3.92!

leading toweakdynamic scaling with

zS521
2~42n!e

n~n18!
521

2

n

a

n
<zr521

a

n
. ~3.93!

~c! Lastly, for n>4,

uH* 5
6e

n18
, g0*

250, w0* 50, ~3.94!

and consequentlyzS5zr52 take on their mean-field value
to one-loop order. More generally fora,0 the order param-
eter and conserved energy density dynamics decoupl
criticality, which implies purely model A dynamics for th
order parameter, and uncritical diffusive relaxation for t
conserved mode, i.e.,

zS521ch, zr[2, ~3.95!

with c56 ln 4
3211O(e).

For model D, the conserved order parameter (a52) al-
ways relaxes much slower than the also conserved, but n
critical energy density near the phase transition, and con
quently w→`. Note that the identityZl[ZS implies gl

[gS , and hence the model B scaling relationzS[42h
holds. We now have onlytwo different regimes, with the
conserved field either influenced by the critical variable,
not. Forn,4 ~a.0!

uH* 5
6e

n18
, gC*

25
2~42n!e

n~n18!
, wD* 5`, ~3.96!

whence

zS[42h, zr521
a

n
, ~3.97!

whereas forn>4 ~a<0!

uH* 5
6e

n18
, g0*

250, wD* 5` ~3.98!

with the decoupled model B dynamics described by

zS[42h, zr[2. ~3.99!

D. Isotropic detailed balance violation in model D

We start with a particularly simple case of our vario
nonequilibrium systems, namely, that of model D subject
isotropic detailed balance violation. Previously, we saw up
integrating out the conserved field from the dynamic act
and taking the asymptotic limit of the ratio of relaxatio
times, i.e.,w5D/l→`, that the nonequilibrium paramete
Q drops out of the field theory entirely. This is also explicit
3-11
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seen in the perturbation expansions for the vertex functio
For example, consider the two point function

G S̃S~q,0!

5lq2Fr 1
n12

6
~ ũ23g̃2!E

p

1

r 1p2
1q21g̃2~12Q!

3E
p

S q

2
1pD 2

S q

2
1pD 2F r 1S q

2
1pD 2G1wS q

2
2pD 2G ,

cf. Eq. ~A1! in the Appendix. We see that the second te
which involvesQ vanishes in the limitw→`. This is gen-
erally true of all the other vertex functions also. Therefo
all the effects of the nonequilibrium perturbation are elim
nated. Consequently, the renormalization factors then
come identical to those of the pure equilibrium mod
~3.62!–~3.67!, with however, the rescaled nonlinear co
plings u→ũ andg2→g̃2. Therefore, the critical fixed point
and exponents are also accordinglyidentical to those of the
equilibrium model D. This leads us to the distinct statem
that aconservedorder parameter subject to anisotropicnon-
equilibrium perturbation does not display any novel dynam
critical behavior even whenquadraticallycoupled to a con-
served scalar density. We shall, however, see in Sec. I
that when model D is subject to ananisotropic‘‘dynamical’’
noise, drastic effects may emerge in this system.

E. Isotropic detailed balance violation in model C

1. Renormalization and one-loop RG flow functions

For model C (a50), w,` at the stable equilibrium fixed
points, so the nonequilibrium parameterQ does not disap-
pear from the asymptotic theory. As mentioned before
simple rescaling of the fields and coupling constants allo
setting the relaxation rate and noise strength of the o
parameter equal,l5l̃ ~with kBTS51 here!, whence Q

5D̃/D. With Zl̃5Zl , the ratio of Eqs.~3.44! and ~3.49!
gives ZS̃ , and subsequently by means of Eqs.~3.37! and
~3.50!–~3.54! we arrive at

Zr512g̃2Fn

2
2

2~12Q!w

~11w!2 GAdm2e

e
, ~3.100!

ZS511g̃2
~12Q!w2

~11w!3

Adm2e

e
, ~3.101!

ZS̃511
g̃2

11w F22~12Q!S 11
1

~11w!2D G Adm2e

e
,

~3.102!
03611
s.

,

e-
l

t

c

C

a
s
er

Zg512
n12

3
ũ

Adm2e

e
1g̃2Fn14

2
2

2~12Q!

11w

3S 12
w

~11w!2D GAdm2e

e
, ~3.103!

Zu512
n18

6
ũ

Adm2e

e
2

6 g̃4

ũ
F12

12Q

11w GAdm2e

e

1g̃2F62
2 ~12Q!

11w S 21
1

11wD G Adm2e

e
, ~3.104!

supplementing Eqs.~3.38!, ~3.40!, ~3.42!, ~3.48!, and~3.49!.
From those renormalization constants, we infer the R

flow functions

gS52g̃R
2

~12QR!wR
2

~11wR!3
, ~3.105!

g S̃52
g̃R

2

11wR
F11QR2

12QR

~11wR!2G , ~3.106!

gl5gl̃5
g̃R

2

11wR
F12

12QR

~11wR!2G , ~3.107!

gr52gr̃5g D̃5g̃R
2Fn

2
2

2~12QR!wR

~11wR!2 G , ~3.108!

gD5
n

2
g̃R

2 , ~3.109!

gt5221
n12

6
ũR2g̃R

2Fn12

2
2

12QR

~11wR!3G ,

~3.110!

and the four coupled RGb functions

b ũ56g̃R
4F12

12QR

11wR
G1ũRH 2e1

n18

6
ũR

22g̃R
2F32

12QR

11wR
S 21

1

11wR
D G J , ~3.111!

b g̃5g̃R
2 H 2e1

n12

3
ũR

22g̃R
2Fn14

4
2

12QR

11wR
S 12

wR

~11wR!2D G J ,

~3.112!

bw5wRg̃R
2Fn

2
2

1

11wR
1

12QR

~11wR!3G , ~3.113!
3-12
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bQ5QR~g D̃2gD!522g̃R
2 wR QR~12QR!

~11wR!2
.

~3.114!

2. RG fixed points and their stability

For wRg̃R
2.0, Eq.~3.114! yields three RG fixed points fo

the nonequilibrium parameterQ, namely,Q0* 50, Qeq* 51,
andQ *̀ 5`. But from

]bQ

]QR
522g̃R

2wR~122QR!

~11wR!2
~3.115!

we infer that only theequilibrium fixed point Qeq* 51 is
stable. This implies that detailed balance is effectively
stored at the phase transition in this situation, and
asymptotic critical behavior is that of the equilibrium mod
C with the exponents given in Sec. III C. It is, howeve
instructive to investigate the possible existence of genu
nonequilibrium fixed points, as they might influence the sc
ing behavior in transient crossover regimes.

We begin withQ0* 50. The RGb function for the time
scale ratiowR at QR50 reads

bw5wRg̃R
2Fn

2
2

wR~21wR!

~11wR!3 G ~3.116!

with the derivative

]bw

]wR
5g̃R

2Fn

2
2

wR~41wR!

~11wR!4 G . ~3.117!

Since the maximum value of the second term in the brac
of Eq. ~3.116! at wR5A321 is '0.385,n/2 for any n
>1, the only fixed points arew0* 50 andwD* 5`, of which
the former is stable. AtQ0* 505w0* , we find

gS* 5g S̃
* 5gl* 5gl̃

* 50, ~3.118!

gr* 52gr̃* 5gD* 5g D̃
* 5

n

2
g̃* 2, ~3.119!

gt* 5221
n12

6
ũ* 2

n

2
g̃* 2 ~3.120!

with ũ* and g̃* 2 denoting the zeros of

b ũ5ũRF2e1
n18

6
ũRG , ~3.121!

b g̃5g̃R
2F2e1

n12

3
ũR2

n

2
g̃R

2 G . ~3.122!

Note the striking similarity with the equilibriumb functions
~3.78! and ~3.79!, yet with the crucial sign change in Eq
~3.122!, and the fact that the anomalous dimensions at
fixed point satisfy the relations~3.72! that would be imposed
03611
-
e
l

e
l-

ts

e

by a fluctuation-dissipation theorem. Upon inserting t
stable~for e.0! Heisenberg fixed pointuH* 56e/(n18), we
arrive at

b g̃5g̃R
2Fn24

n18
e2

n

2
g̃R

2 G , ~3.123!

which demonstrates that the regimes as function ofn for the
existence of a nontrivial fixed pointg̃c*

2 become inverted as
compared to the equilibrium case:g̃C*

252(n24)e/n(n18)
.0 only for n.4, but is clearly unstable. The stable R
fixed point is thus characterized by vanishing couplingg̃0*

2

50 to the conserved field, which again implies decoup
model A dynamic critical behavior, withh50, n21522(n
12)e/(n18), andzS52 to one-loop order, and purely dif
fusivezr[2. Forn,4, on the other hand,g̃0*

250 becomes
unstable.

Next, for Q *̀ 5`, the effective dynamic coupling in Eqs
~3.111!–~3.113! becomes

ḡR
25QRg̃R

2 . ~3.124!

ThusgD* 50 and

bw52
wRḡR

2

~11wR!3
, ~3.125!

whence we see thatwD* 5` is stable, which immediately
implies thatgS* 5g S̃

* 505gl* 5gl̃
* andgr* 5gr* 505g D̃

* as
well. Sincegt* in Eq. ~3.110! too reduces to the standar
static expression, see Eq.~3.75!, this fixed point describes
mere model A critical scaling, independent of the values
ũ* and ḡ* 2. In fact

b ḡ5ḡR
2F2e1

n12

3
ũRG ~3.126!

in addition to Eq.~3.121!, which only allows for the standard
decoupled model A Heisenberg fixed pointuH* 56 e/(n
18), ḡ0*

250 if n>4. As for Q0* 50, there exists no finite
nonequilibrium fixed point forn,4.

At the unstable fixed pointQ *̀ 5`, w0* 50,

gS* 50, gl* 5gl̃
* 52

g S̃
*

2
5ḡ* 2, ~3.127!

gr* 52gr̃* 5g D̃
* 5gD* 50, ~3.128!

gt* 5221
n12

6
ũ* 2ḡ* 2, ~3.129!

b ũ5ũRF2e1
n18

6
ũR26ḡR

2 G , ~3.130!

b ḡ5ḡR
2F2e1

n12

3
ũR22ḡR

2 G . ~3.131!
3-13
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Again, the equilibrium relations~3.72! are satisfied. As to be
expected, the decoupled model A fixed pointuH* 56e/(n
18), ḡ0*

250 is stable forn>4 in the (ũR ,ḡR
2) subset of

parameter space, whereas forn,4 a novel fixed pointu*̀
512e/(5n14), ḡ*̀ 25(42n)e/2 (5n14) emerges, with
unusual scaling exponentsh50, n215223(n14)e/2(5n
14), zS521(42n)e/2(5n14), and zr52 ~all to one-
loop order!. But recall that this fixed point is unstable both
the wR and theQR directions.

This leaves us with the casew0* 50, which according to
Eq. ~3.114! allows any value for the nonequilibrium param
eterQR . Yet since

]bw

]wR
5g̃R

2 S n

2
2QRD ~3.132!

at w0* 50, stability requiresQR<n/2. Quite generally, as in
equilibrium, the model A fixed point~3.94! with decoupled
diffusive relaxation for the conserved scalar density is sta
for n>4, with arbitrary QR<n/2, but unstable forn,4.
The corresponding anomalous dimensions become

gS* 50, gl* 5gl̃
* 52

g S̃
*

2
5g̃* 2QR , ~3.133!

gr* 52gr̃* 5gD* 5g D̃
* 5

n

2
g̃* 2, ~3.134!

gt* 5221
n12

6
ũ* 2g̃* 2S n

2
1QRD . ~3.135!

Remarkably, the equilibrium relations~3.72! hold once again
at any such fixed point. Insertingw0* 50 into Eqs.~3.112!
and~3.111! and searching for nontrivial zeros leads to a qu
dratic equation, which is solved by

g̃R
25

e

4 A
@23n~122QR!6A9n2~122QR!214~n24!A#,

and

ũR5
3e

n12 F11
2g̃R

2

e S n

4
1QRD G

with

A5
n2~n18!

16
1~5n14!QR~12QR!. ~3.136!

With appropriate sign choices, this reduces to the spe
cases withQ*50, 1, and̀ already explored above; e.g., fo
Qeq* 51, one finds gC*

252(42n)e/n(n18) and ũ*
524e/n(n18), i.e., ū* 5ũ* 23gC*

25uH* 56e/(n18). Yet,
as depicted in Fig. 1, Eq.~3.136! permits an entire interval o
nontrivial fixed point solutions, namely, for 0.94<QR<1 for
n52, and 0.84<QR<1.5 for n53. Apparently, therefore
there exists aline of fixed points that describes slight pertu
bations from equilibrium for two- and three-component ord
03611
le

-

al

r

parameters. Whereas the ensuing anomalous dimension
isfy the equilibrium constraints~3.72!, the critical exponents
individually differ from their equilibrium model C values
and vary continuously as functions of the nonequilibriu
parameterQR , as shown in Fig. 2. We cannot exclude, ho
ever, that this unusual feature might merely constitute
artifact of the one-loop approximation.

In summary, for the case of isotropic detailed balance v
lation in model C with a scalar order parameter (n51), no
stable genuine nonequilibrium fixed points are found. T
RG flow then takes the system to theequilibrium model C
fixed point with strong dynamic scalingzS5zr521a/n
(wC* 51), and the standard scaling exponents as given
Sec. III C. However, for model C with two- or three
component order parameter, in equilibrium governed
weak dynamic scaling (zS<zr , w0* 50), at least to one-loop
order lines of nonequilibrium model C fixed points are fou

FIG. 1. The nontrivial fixed pointsg25g̃R
2/e andu5ũR /e @Eq.

~3.136!# as functions ofQR<n/2 for n52 (0.94<QR<1) andn
53 (0.84<QR<1.5).

FIG. 2. Critical exponentsn, zS , andzr for the isotropic non-
equilibrium model C withn52 (0.94<QR<1) and n53 (0.84
<QR<1.5) in the weak dynamic scaling regime with (w0* 50) as
functions ofQR<n/2.
3-14
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that include the equilibrium fixed points, yet allow forcon-
tinuouslyvarying static and dynamic critical exponents. F
n>4, the conserved scalar density effectively decoup
from the order parameter, which then follows model A d
namic critical behavior. The effective noise temperature ra
Q naturally plays no role in this decoupled scenario.

IV. ANISOTROPIC VIOLATION OF DETAILED BALANCE
IN MODELS C AND D

A spatiallyanisotropicnonequilibrium perturbation is ap
plied to models C and D by dividing ourd-dimensional
space into two sectors of dimensionalitydi andd' ~with di

1d'5d), and assigning to them different noise strengthsD̃ i

and D̃' , respectively, for the conserved energy dens
D̃¹2→D̃ i¹ i

21D̃'¹'
2 , whence Eq.~2.8! is replaced with

^h~x,t !h~x8,t8!&522~D̃ i¹ i
21D̃'¹'

2 !d~x2x8!d~ t2t8!.

~4.1!

The conserved field noise in the two sectors can thus
thought of as being coupled to thermal reservoirs with d
ferent effective temperaturesTi andT' , whence we obtain
two distinct nonequilibrium parametersQ i /'5D̃ i /'l/Dl̃.
Correspondingly, a new degree of freedom enters the p
lem in the form of

s5Q i /Q' , ~4.2!

the ratio of the temperatures of the heat baths coupled to
conserved density in the two spatial sectors, each meas
with respect to the order parameter~critical! temperature. An
anisotropic perturbation clearly requires thatsÞ1. We may
choose the label assignments such thatQ i<Q' , i.e.,
0<s<1. In general, we must allow for the anisotropic noi
in Eq. ~4.1! to induce further splittings in therenormalized

parametersDR , lR , and l̃R as well ~see Ref.@10#!. For
model D, we may in addition impose anisotropic strengths
the conserved order parameter noise,

^za~x,t !zb~x8,t8!&

522~ l̃ i¹ i
21l̃'¹'

2 !d~x2x8!d~ t2t8!dab, ~4.3!

whereuponQ i /'5D̃ i /' l/Dl̃ i /' .

A. The anisotropic nonequilibrium model C

1. Renormalization to one-loop order

For model C (a50), we merely need to replaceD̃q2

→D̃ iqi
21D̃'q'

2 . Therefore, the only modifications to th
preceding perturbation expansions occur in those diagr
which contain an internal conserved field propaga
Gr̃r

0 (q,v). Eqs.~3.38! and ~3.41! still hold, which implies

Zr5Zr̃
215ZD̃ i /'

~4.4!

to all orders in perturbation theory. Removing the logari
mic divergence inGr̃r(q,0) gives to first order
03611
r
s

-
o

:

e
-

b-

he
red

n

s
r

-

ZD512
n

2
g̃2

Adm2e

e
~4.5!

as in Eq.~3.40!. The results of renormalizing those quantiti
that do not involve taking derivatives with respect to th
external momenta are quite similar to the previous isotro
results. The effects of the anisotropy in these cases is a m
replacement of the factors 12Q with 12(di Q i
1d' Q')/d in the expressions for the renormalization co
stants. For example, the fluctuation-inducedTc shift becomes

r c52
n12

6
~ ũ23g̃2!E

p

1

r c1p2
2

g̃2

11w

3S 12
di

d
Q i2

d'

d
Q'D E

p

1

r c /~11w!1p2
. ~4.6!

After rewriting in terms of the true distance from the critic
point t5r 2r c , subsequent multiplicative renormalizatio
of G S̃S(0,0) and]vG S̃S(0,v)uv50 leads to

~ZS̃ZS!1/2ZlZt512Fn12

6
~ ũ23g̃2!1

g̃2

~11w!2

3S 12
di

d
Q i2

d'

d
Q'D GAdm2e

e
,

~4.7!

~ZS̃ZS!1/2511
g̃2

11w F12
1

11w

3S 12
di

d
Q i2

d'

d
Q'D GAdm2e

e
, ~4.8!

which are just the straightforward generalizations of E
~3.33! and ~3.37!.

Yet the resulting expressions become more complica
when the quantities to be renormalized involve derivativ
with respect to the external momentum. Consider

]

]qi /'
2

G S̃S~qi /',0!uqi /'50

5lF12
g̃2

~11w!2Ep
S 12

Q ipi
21Q'p'

2

p2 D
3

1

@t/~11w!1p2#2
1

4g̃2

~11w!3

]

]qi /'
2

3E
p
S 12

Q ipi
21Q'p'

2

p2 D ~qi /'•pi /'!2

@t/~11w!1p2#3G ;

~4.9!

evaluating the integrals at the normalization pointt5m2 in
dimensional regularization then yields
3-15
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~ZS̃ZS!1/2Zl i /'
512

w g̃2

~11w!3 S 12
di

d
Q i2

d'

d
Q'DAdm2e

e

7
d'/i

3d

g̃2~Q i2Q'!

~11w!3

Adm2e

e
. ~4.10!

Next, fromG S̃S̃(0,0), we get

ZS̃Zl̃511
g̃2

11w S di

d
Q i1

d'

d
Q'DAdm2e

e
, ~4.11!

and likewise the renormalization of the three- and four-po
functions results in expressions that can simply be obtai
from Eqs. ~3.46! and ~3.47! through the substitutionQ
→(diQ i1d'Q')/d.

Upon identifying Zl̃ i /'
5Zl i /'

and factoring from these
products ofZ factors, we obtain at last

Zr5Zr̃
215ZD̃ i /'

512g̃2Fn

2
2

2w

~11w!2 S 12
di

d
Q i2

d'

d
Q'D GAdm2e

e
,

~4.12!

ZSi /'
511

g̃2

~11w!3 Fw2S 12
di

d
Q i2

d'

d
Q'D

7
d'/i

3d
~Q i2Q'!G Adm2e

e
, ~4.13!

ZS̃i /'
511

g̃2

11w F22S 11
1

~11w!2D S 12
di

d
Q i2

d'

d
Q'D

6
d'/i

3d

Q i2Q'

~11w!2GAdm2e

e
, ~4.14!

Zl i /'
5Zl̃ i /'

512
g̃2

11w F12
1

~11w!2 S 12
di

d
Q i2

d'

d
Q'D

6
d'/i

3 d

Q i2Q'

~11w!2GAdm2e

e
, ~4.15!

Zt i /'
512

n12

6
ũ

Adm2e

e
1g̃2Fn12

2
2

1

~11w!3

3S 12
di

d
Q i2

d'

d
Q'D6

d'/i

3 d

Q i2Q'

~11w!3G Adm2e

e
,

~4.16!
03611
t
d

Zgi /'
512

n12

3
ũ

Adm2e

e
12g̃2Fn14

4
2

1

11w

3S 12
w

~11w!2D S 12
di

d
Q i2

d'

d
Q'D

6
d'/i

3d

Q i2Q'

~11w!3GAdm2e

e
, ~4.17!

Zui /'
512

n18

6
ũ

Adm2e

e
2

6g̃4

ũ
F12

1

11w S 12
di

d
Q i

2
d'

d
Q'D GAdm2e

e
12g̃2F32

1

11w S 21
1

11wD
3S 12

di

d
Q i2

d'

d
Q'D6

d'/i

3 d

Q i2Q'

~11w!3GAdm2e

e
,

~4.18!

in addition to Eqs.~4.4! and ~4.5!.

2. Anisotropic RG fixed points

We first focus on the nonequilibrium anisotropy parame
s. Yet because the anisotropic contributions to the renorm
ization constantsZl̃ i /'

and Zl i /'
~even when these are no

chosen identical! andZD̃ i /'
5ZD i /'

, respectively, are equal a

least to one-loop order, its RGb function reads

bs5sR~g D̃ i
2gD i

1gl i
2gl̃ i

2g D̃'
1gD'

2gl'
1gl̃'

!50,

~4.19!

leaving the fixed points* undetermined. Indeed, conside
ing the heat bath ratios in the two sectors separately, we
~omitting the i /' subscripts on the renormalized couplin
wR and g̃R

2)

bQ i /'
52

2wRg̃R
2 Q i /'R

~11wR!2 S 12
di

d
Q iR2

d'

d
Q'RD

~4.20!

in almost obvious generalization of Eq.~3.114!, and the cor-
responding stability matrix becomes

F ]bQ i
/Q iR ]bQ i

/Q'R

]bQ'
/Q iR ]bQ'

/Q'R
G

52
2wRg̃R

2

d ~11wR!2

3Fd22diQ iR2d'Q'R 2d'Q iR

2di Q'R d2di Q iR22d'Q'R
G .
~4.21!
3-16



ic
he
s

he

a-

an
. I
-

y

-

s

t

ng

th

NONEQUILIBRIUM CRITICAL DYNAMICS OF THE . . . PHYSICAL REVIEW E 69, 036113 ~2004!
We restrict our investigation to the casewR g̃R
2.0 here,

since for weak dynamic scaling withw0* 50, we already
found genuine nonequilibrium behavior even for isotrop
detailed balance violation in Sec. III E. We then find that t
fixed pointsQ i /'0* 50 andQ i /'`* 5` are unstable, wherea
there is a stableline of fixed points given by

diQ i* 1d'Q'
* 5d, ~4.22!

which incorporates the equilibrium fixed pointQ ieq* 51
5Q'eq* . Its stability matrix eigenvalues are 0 and 1. T
marginal flow direction is clearly along the fixed line~arbi-
trary values* ). In fact, one readily computes for the anom
lous dimensions

gSi /'56
d'/i

3d
g̃R

2 Q i2Q'

~11wR!3
, ~4.23!

g S̃i /'52
2g̃R

2

11wR
7

d'/i

3d
g̃R

2 Q i2Q'

~11wR!3
, ~4.24!

gr52gr̃5gD5g D̃5
n

2
g̃R

2 , ~4.25!

gl i /'
5gl̃ i /'

5
g̃R

2

11wR
6

d'/i

3d
g̃R

2 Q i2Q'

~11wR!3
, ~4.26!

gt5221
n12

6
ũR ~4.27!

2g̃R
2Fn12

2
6

d'/i

3d

Q i2Q'

~11wR!3G . ~4.28!

Consequently, the relations~3.72! that follow from the
fluctuation-dissipation theorems for the order parameter
conserved density, respectively, are fulfilled even here
this sense, the entire fixed line~4.22! again represents a sys
tem mimicking thermal equilibrium, albeit with potentiall
anomalous scaling exponents.

Next we consider

bwi /'
5wRg̃R

2Fn

2
2

1

11wR
7

d'/i

3d

Q i2Q'

~11wR!3G , ~4.29!

with

]bwi /'

]wR
5g̃R

2Fn

2
2

1

~11wR!2
7

d'/i

3d
~Q i2Q'!

122wR

~11wR!4G .

~4.30!

Thus, the weak scaling fixed pointw0* 50 is stable forn
>26(2d'/i/3d)(Q i2Q'), whereaswD* 5` is unstable in
the w direction. In addition, there appears astrong scaling
nontrivial fixed pointw* given by the solution of the non
linear equation
03611
d
n

n

2
~11w* !32~11w* !256

d'/i

3d
~Q i2Q'!. ~4.31!

Since at this fixed point

]bwi /'

]wR
5

2w* g̃R
2

11w*
S 3n

4
2

1

11w*
D , ~4.32!

it is stable forn>4/3(11w* ). The associated anomalou
dimensions become

gS* 5g̃R
2S n

2
2

1

11w*
D , ~4.33!

gr* 5gD* 5gl* 5
n

2
g̃R

2 , ~4.34!

gt* 5221
n12

6
ũR2g̃R

2S n1
w*

11w*
D . ~4.35!

We now need to find the RG fixed points from the coupledb
functions

b ũ5ũRF2e1
n18

6
ũR22cug̃R

2 G16g̃R
4 , ~4.36!

b g̃5g̃R
2F2e1

n12

3
ũR22cgg̃R

2 G , ~4.37!

where

cg5
3n

4
1

w*

11w*
, ~4.38!

cu521
n

2
1

w*

11w*
5cg122

n

4
. ~4.39!

Note that 3n/4<cg<113n/4. As usual, the model A fixed
point uH* 56e/(n18), g̃0*

250 is unstable forn,4, but be-
comes stable forn>4. For n,4, the stable RG fixed poin
acquires nonzero values for both couplingsũR andg̃R

2 , to be
found as the solution of the quadratic equation followi
from Eqs.~4.36! and ~4.37!:

g̃R
25

e

4C
@B6AB228~42n!C#,

ũR5
3e

n12 S 11
2cgg̃R

2

e D , ~4.40!

with B5~n12!~82n!24~42n!cg ,

and C52~n12!22~n12!~82n!cg12~42n!cg
2 .

This incorporates the equilibrium fixed point, since wi
wC* 5(2/n)21 one obtainsB56n and C5n2(n18)/8,
3-17
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whence the two solutions in Eq.~4.40! reduce to the two
nontrivial model C fixed points discussed in Sec. III C:g̃1*

2

52e/n, u0* 50 and g̃C*
252(42n)e/n(n18), uH* 56e/(n

18) for g̃R
2 and ūR5ũR23g̃R

2 . The solutions~4.40! for n
51,2,3 are shown in Fig. 3 as functions ofcg . Upon insert-
ing into the anomalous dimensions~4.33!–~4.35!, this once
again yields continuously varying static and dynamic criti
exponentsh52gS* , n2152gt* , and zS521gr* 5zr as
depicted in Figs. 4 and 5 as functions of the parametercg .
Via Eq. ~4.38!, the parameter here is the time scale ratiow* ,
or equivalently, the effective temperature differenceQ i
2Q' between the longitudinal and transverse sectors,
Eq. ~4.31!. In conclusion, the one-loop RG flow equatio
for the nonequilibrium model C with spatiallyanisotropic
noise allow for novel strong dynamic scaling regimes w
zS5zr with continuously varying critical exponents even f
a scalar order parameter that encompass the equilib
model C fixed point.

FIG. 3. The nontrivial fixed pointsg25g̃R
2/e andu5ũR /e @Eq.

~4.40!# as functions ofcg , 3n/4<cg<113n/4 for n51, 2, and 3.

FIG. 4. Critical exponenth for the anisotropic nonequilibrium
model C with n51,2,3 as functions of the parametercg (3n/4
<cg<113n/4).
03611
l

ee

m

B. The anisotropic nonequilibrium model D

We next consider the critical behavior of our nonequili
rium version of model D with spatiallyanisotropic con-
served noise. The anisotropy may now be imposed thro
l̃q2→l̃ iqi

21l̃'q'
2 in addition to D̃q2→D̃ iqi

21D̃'q'
2 , see

Eqs.~4.3! and~4.1!. We first compute the fluctuation-induce
Tc shift from the criticality condition]q2G S̃S(q,0)uq5050.
Yet for this purely relaxational dynamics, at least to one-lo
order the order parameter noise strengthsl̃ i /' do not enter,
and we again arrive at Eq.~4.6! as for model C with non-
conserved order parameter. However, since asymptotic
w→` here, the nonequilibrium parametersQ i /' disappear,
simply leaving the static one-loopTc shift

r c52
n12

6
ūE

p

1

r c1p2
. ~4.41!

In the same manner, all other fluctuation contributions red
to the equilibrium expressions. As demonstrated explicitly
Sec. III A by integrating out the conserved scalar density,
terms violating detailed balance become obsolete at
model D fixed pointwD* 5`. We remark that generalization
of dynamical models with conserved order parameter t
contain reversible mode couplings to other conserved qu
tities behave markedly different when subject to spatia
anisotropic noise correlations: In models H and J with ‘‘d
namical’’ noise, the nonlinear mode couplings induceaniso-
tropic shifts of the critical temperature already to one-lo
order, thus rendering the fluctuations soft only in one subs
tor of momentum space. For the ensuing two-tempera
models H and J, no stable RG fixed points could be ide
fied, perhaps indicating that no simple nonequilibrium stea
state is approached in the long-time limit@10,18,19#.

C. The two-temperature model D

1. Derivation of the effective theory

The anisotropic nonequilibrium model D discussed in t
preceding section does not actually represent the most

FIG. 5. Critical exponentsn andzS5zr for the anisotropic non-
equilibrium model C withn51,2,3 as functions ofcg (3n/4<cg

<113n/4).
3-18
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eral spatially anisotropic extension of relaxational dynam
with a conserved order parameter coupled to a conse
scalar density. Rather, one can generalize Eqs.~2.5! and~2.6!
with a52 to

]Sa

]t
5l i¹ i

2F r i2
l̄

l i
¹ i

222¹'
2 1

ui

6 (
b

Sb2
1girGSa

1l'¹'
2 F r'2¹'

2 1
u'

6 (
b

Sb2
1g'rGSa1za,

~4.42!

]r

]t
5D i¹ i

2Fr1
gi

2 (
a

Sa2G1D'¹'
2 Fr1

g'

2 (
a

Sa2G1h

~4.43!

with noise correlators

^za~x,t !zb~x8,t8!&522~ l̃ i ¹ i
21l̃'¹'

2 !d~x2x8!

3d~ t2t8!dab, ~4.44!

^h~x,t !h~x8,t8!&522~D̃ i¹ i
21D̃'¹'

2 !d~x2x8!d~ t2t8!.

~4.45!

We choose the labels such thatr',r i , which is to be inter-
preted as a lower-order parameter temperatureT',Ti in
the transverse spatial sector. Thus, at the critical point,
longitudinal fluctuations remain uncritical~‘‘stiff’’ !, similar
to equilibrium anisotropic elastic phase transitions@21#, or
the behavior at Lifshitz points@22#. Nonlinearities and
higher-order gradient terms should then only be relevan
the ‘‘soft’’ transverse directions. In analogy with the two
temperature nonequilibrium model B~or randomly driven
lattice gases! @11–13#, it is possible to construct an effectiv
field theory which reduces our most general anisotro
model D to an equivalentequilibrium system, albeit with
spatially long-range correlations. We first construct this
fective field theory and then perform the perturbation
renormalization of the model to one-loop order, discuss
finally the ensuing RG flow equations.

Sincet i5r i2r ci.0 in the noncritical momentum spac
sector, whereast'5r'2r c'→0 at the phase transition, w
expect the terms}qi

4 , qi
2q'

2 to be irrelevant as compared t
q'

4 . In fact, in the Gaussian theory at criticalityl it iqi
2

;q'
4 . Hence we apply anisotropic scaling with@q'#5m,

@qi#5@q'#25m2, @v#5@q'#45m4, which yields the fol-
lowing scaling dimensions:@ l̃'#5@l'#5m0, @ l̃ i#5@l i#

5m22, l̄5m24, @t i /'#5m2, @D̃'#5@D'#5m2, @D̃ i#
5@D i#5m0, and with@Sa#5m211di1d'/2, @r#5mdi1d'/2 at
last @ui /'#5@gi /'

2 #5m42d2di. Consequently, the longitudi
nal parameters all becomeirrelevantunder scale transforma
tions, except the marginal product@l i t i#5m0. Therefore in
the vicinity of the critical point, all nonlinearities in the lon
gitudinal sector and fluctuations;qi

4 , qi
2q'

2 can be safely
omitted. From the naive scaling dimensions ofui /' andgi /'
we infer the upper critical dimension
03611
s
ed

e

in

c

-
l
g

dc542di . ~4.46!

It is reduced as compared to the isotropic case because
critical fluctuations are confined to thed'-dimensional sub-
sector here.

To proceed further, we rescale the fields according toSa

→(l̃' /l')1/2Sa, r→(l' /l̃')1/2r, and define

c5
l i

l'

t i , ũ'5
l̃'

l'

u' , g̃'
2 5

l̃'

l'

g'
2 . ~4.47!

The effectiveLangevin equations of motion for the orde
parameter fieldsSa and the conserved densityr near the
phase transition at last read

]Sa

]t
5l'@c¹ i

21¹'
2 ~r'2¹'

2 !#Sa

1l'¹'
2 F ũ'

6 (
b

Sb2
1g̃'rGSa1za, ~4.48!

]r

]t
5D'¹'

2 Fr1
g̃'

2 (
a

Sa2G , ~4.49!

with the corresponding noise correlations

^za~x,t !zb~x8,t8!&522l'¹'
2 d~x2x8!d~ t2t8!dab,

~4.50!

^h~x,t !h~x8,t8!&522D'Q'¹'
2 d~x2x8!d~ t2t8!,

~4.51!

whereQ' again denotes the heat bath temperature ratio,

Q'5
D̃'

D'

l'

l̃'

. ~4.52!

The preceding Eqs.~4.48!–~4.51! define thetwo-temperature
nonequilibrium model D. Our analysis that led to this effec
tive critical theory for the most general nonequilibriu
model D with dynamical anisotropy closely parallels that
the two-temperature model B@11–13#. Notice that after the
field rescaling, only the noise strength in Eq.~4.51! violates
the Einstein relation with the corresponding relaxation co
stantD' in the critical transverse sector, ifQ'Þ1.

Yet we can certainly write Eqs.~4.48! and ~4.49! in the
form of purely relaxational Langevin dynamics

]Sa~x,t !

]t
5l'¹'

2 dHeff@S,r#

dSa~x,t !
1za~x,t !, ~4.53!

]r~x,t !

]t
5D'¹'

2 dHeff@S,r#

dr~x,t !
1h~x,t !, ~4.54!

with an effective Hamiltonian
3-19
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Heff@S,r#5E ddq

~2p!d (
a

cqi
21q'

2 ~r'1q'
2 !

2q'
2

Sa~q!Sa~2q!

1E ddxF ũ'

4! (
a,b

Sa~x!2Sb~x!2

1
g̃'

2
r~x!(

a
Sa~x!21

1

2
r~x!2G . ~4.55!

As is obvious from its harmonic part, this Hamiltonian co
tains long-range interactions generated by the dynamical
isotropy, akin to those found in driven diffusive system
@4,11#, but also at equilibrium ferroelastic phase transitio
@21# and at Lifshitz points@22#. However, our earlier inves
tigations of model D subject to various nonequilibrium pe
turbations showed that the heat bath temperature ratio~4.52!
disappeared entirely in the asymptotic limit; since we
here concerned only with the transverse sector, this
reached asw'5D' /l'→`. Indeed, integrating out the
conserved scalar density from the dynamical action proce
precisely as in Sec. III A, since the dynamically genera
long-range interactions only appear in the order param
propagator. As a result, the remaining detailed balance
lation plays no role at all for the fixed point properties, a
the two-temperature model D in effect becomes anequilib-
rium system. Thus, we expect it to relax towards a station
state that is characterized by the Gibbsian probability dis
bution Peq@S,r#}exp(2Heff@S,r#), with the effective long-
range anisotropic Hamiltonian~4.55!.

2. Renormalization and critical exponents

We introduce the renormalized fields and parameters a
Sec. III B, supplemented with

cR5Zcc, Q'R5ZQ'
Q' . ~4.56!

But the deviation from the critical dimension now reads

e5dc2d542d2di5422di2d' , ~4.57!

and we define the anisotropic geometric factor as

A~di ,d'!5
G~32d/22di/2!G~d/2!

2d21pd/2 G~d'/2!
, ~4.58!

with A(0,d)5Ad . As a consequence of the conservati
laws, and the ensuing momentum dependence of the vert
in analogy with the isotropic situation~see Sec. III B! the
following relations hold toall orders in perturbation theory
Gr̃r(0,v)[ iv, ]q

'
2 Gr̃r̃(q',0)uq'50[22 D'Q' , G S̃S(0,v)

[ iv, and ]q
'
2 G S̃S̃(q',0)uq'50[22l' , whenceZr̃Zr[1,

Zr̃ZD'
ZQ'

[1, ZS̃ZS[1, andZS̃Zl'
[1. Note that since the

order parameter Langevin equation fulfils the Einstein re
tion, this satisfies the identityZl'

5(ZS /ZS̃)1/2 following
from the fluctuation-dissipation theorem
03611
n-

s

-

e
is

ds
d
er
o-

y
i-

in

es,

-

G S̃S̃~q,v!5
2l'q'

2

v
Im G S̃S~q,v!. ~4.59!

Moreover, none of the nonlinear vertices carries transve
momentum, which leaves thecqi

2 term in the propagator
unrenormalized to all orders in perturbation theory as w
]qi

2G S̃S(qi,0)uqi50[l'c, i.e., Zl'
Zc[1. In summary, we

obtain the exact relations

ZS[ZS̃
21

[Zl'
[Zc

21 , ~4.60!

Zr[Zr̃
21[ZD'

ZQ'
. ~4.61!

The perturbation expansion naturally acquires the sa
structure as for the equilibrium model D~or model C, with
w→`). To one-loop order, which is determined entirely b
simple combinatorics, we can in fact immediately take ov
the equilibrium renormalization constants~3.62!–~3.67! with
shifted critical dimension, the replacementsu→ũ' , g2

→g̃'
2 /cdi/2, and modified geometry factorAd→A(di ,d') as

given in Eq.~4.58!. This is confirmed explicitly by renormal
izing

G S̃S~q,0!5l'F cqi
21q'

4 1q'
2 t'S 12

n12

6
~ ũ'23g̃'

2 !

3E
p

p'
4

@cpi
21p'

2 ~t'1p'!2#2D G ~4.62!

at the normalization pointt'5m2, which leads to

Zl'
51, ~4.63!

Zt512
n12

6

ũ'23g̃'
2

cdi/2

A~di ,d'!m2e

e
. ~4.64!

Similarly, the logarithmic singularity in

Gr̃r~q,0!5D'q'
2 F12

n

2
g̃'

2 E
p

p'
4

@cpi
21p'

2 ~t'1p'!2#2G
~4.65!

is absorbed into

ZD'
512

n

2

g̃'
2

cdi/2

A~di ,d'!m2e

e
. ~4.66!

Finally, the three- and four-point vertex functions yield

Zg512
n12

3

ũ'

cdi/2

A~di ,d'!m2e

e

1
n12

2

g̃'
2

cdi/2

A~di ,d'!m2e

e
, ~4.67!
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Zu512
n18

6

ũ'

cdi/2

A~di ,d'!m2e

e

16S 12
g̃'

2

ũ'

D g̃'
2

cdi/2

A~di ,d'!m2e

e
, ~4.68!

as well asZr5ZD , whenceZQ'
51 as expected: Sinc

the nonequilibrium parameterQ' disappears from the
asymptotic theory entirely, its fixed point remains undet
mined, bQ'

[0. We also remark that theTc shift obtained
from the criticality condition is

ur 0cu5F ~n12!~ ũ'23g̃'
2 ! A~di ,d'!

3cdi/2~d1di22!~42d2di!
G 2/(42d2di)

.

~4.69!

The divergence of the denominator here indicates that in
dition to the reduction of the upper critical dimension, t
lower critical dimension is lowered as well todlc522di ,
just as in the two-temperature model B@10–12#.

As in Sec. III B 3, we can now define flow functions v
logarithmic derivatives of theZ factors with respect to the
renormalization scalem, see Eqs.~3.57!–~3.59!, with $a%
5ũ' , g̃'

2 , l' , c, and t' here. The solutions to the RG
equations for the vertex functions are given by Eq.~3.61!,
with running couplings and parameters determined by
flow equations Eq.~3.60!. The general scaling form for th
renormalized order parameter response and correlation f
tion thus obtained at an IR-stable fixed point becomes

x~t' ,qi ,q' ,v!5q'
221hx̂S t'

q'
1/n

,
qi

q'
11D

,
v

q'
z D , ~4.70!

C~t' ,qi ,q' ,v!5q'
222z1hĈS t'

q'
1/n

,
qi

q'
11D

,
v

q'
z D ,

~4.71!

where, in addition to the usual static exponentsh, n, and the
dynamic exponentz, the anisotropy scaling exponentD has
been introduced.

Since the two-temperature model D is effectively in eq
librium, we may insert the Heisenberg fixed pointuH*
56e/(n18) for ū'5ũ'23g̃'

2 to obtain the static critica
exponents, which thus assume the usual one-loop form

h52gS* 50, ~4.72!

n2152gt'
* 522

n12

n18
e, ~4.73!

a522dn5
42n

2~n18!
e, ~4.74!
03611
-

d-

e

c-

-

but with e542d2di . To two-loop order, the static critica
exponents were evaluated in Ref.@13#. In addition, upon in-
voking the exact relation~4.60!, i.e., gS[gl'

[2gc , we
arrive at

zr521gD'
* , ~4.75!

zS541gl'
* [42h, ~4.76!

D512
gc*

2
[12

h

2
, ~4.77!

All order parameter scaling exponents are thus given by
static critical exponents, precisely as in the two-temperat
model B @11–13#.

As in equilibrium, the same is true for the dynamic cri
cal exponent governing the conserved energy densityr.
Sincezc50 in the one-loop approximation, the ensuing R
b functions forū' and g̃'

2 are just Eqs.~3.78! and ~3.79! of
the equilibrium model C/D. Consequently forn,4, g̃'

2

→gC*
252(42n)e/n(n18)52a/nn and

zr521
a

n
, ~4.78!

whereas forn>4, a<0 andg̃'
2 →0. Therefore the coupling

between the order parameter and the conserved density
comes irrelevant, resulting in a purely diffusive

zr[2. ~4.79!

Therefore, the independent static and dynamic critical ex
nents to one-loop order look identical with those of the eq
librium model D, albeit with shiftede542d2di . The order
parameter scaling exponents, including the additional ani
ropy exponent, are, moreover, precisely those of the tw
temperature model B.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the critical behavior of t
relaxational models C and D with nonconserved and c
served order parameter, respectively, coupled to a conse
scalar density, and subject to both isotropic and anisotro
nonequilibrium perturbations. This supplements previo
work on the identification of genuine nonequilibrium critic
behavior in the form of modified dynamic universali
classes inO(n)-symmetric models@19#. These investigations
have demonstrated the general robustness of the equilib
critical behavior in models with nonconserved order para
eter with respect to the violation of detailed balance, b
isotropically and anisotropically. This remarkable stabil
has been established particularly for model A which rep
sents the simplest critical dynamics with a nonconserved
der parameter@7–9#. But even in more complicated situa
tions involving reversible mode couplings between
nonconserved order parameter and additional conse
quantities, viz., models E and G, or theirn-component gen-
eralization, the SSS model@23#, the equilibrium RG fixed
3-21
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point turned out to be stable, and thus describes
asymptotic critical power laws, despite the existence of
ditional genuine nonequilibrium fixed points@10#.

Our results here for model C withscalar order parameter
(n51), which extends model A to include a nonlinear co
pling to a conserved scalar density, are in accord with
general observation. Specifically in the case ofisotropic de-
tailed balance violation, the coupling of the order parame
and the conserved field to different heat baths gives ris
the nonequilibrium parameterQ which represents the tem
perature ratio of these heat baths. This variable induces
ferent renormalizations for the noise strengths, with the p
sibility for genuinely new dynamic as well as static critic
behavior. Even when unstable, such nonequilibrium fix
points would affect crossover features and corrections
scaling in the critical regime. However, a stability analy
yields that the equilibrium fixed point that describesstrong
dynamic scaling (wC* 51) with Q51 remains stable. At leas
to one-loop order, we could not identify any genuine no
equilibrium model C scaling regime for the case of a sca
~Ising! order parameter, even for the extreme situations w
either Q50 or Q5`. For n51, the asymptotic critical be
havior is thus definitely governed by the equilibrium mod
C fixed point, with the static critical exponents of th
O(n)-symmetricf4 model, and with equal dynamic expo
nentszS5zr521a/n @15,16#. The critical behavior again
reduces to that of the isotropic case as described ab
Therefore, we obtain the remarkable result that a quadr
coupling of a scalar order parameter to a conserved den
which preserves the internal symmetry of the correspond
equilibrium system, does not produce any novel universa
classes for models with a nonconserved order param
subject to detailed balance violations. This result is to
seen in contrast with the system studied in Ref.@24# which
incorporates alinear coupling of a conserved field to a non
conserved order parameter; in that case, effective long-ra
interactions are generated, which yield novel nonequilibri
scaling features.

For model C withn-component order parameter, RG fixe
points withQ*Þ1 do appear forn.4. Yet in this situation,
the order parameter effectively decouples from the conse
density, resulting in model A critical behavior. However, o
RG analysis yields more interesting critical scaling for t
nonequilibrium model C with two or three order parame
components. In equilibrium, one encounters weak dyna
scaling in these cases, withzS<zr (w0* 50). We find that the
one-loop flow equations allow for an entire line of fixe
points encompassing the equilibrium case. Consequently
interval of fixed point values emerges for the nonequilibriu
parameterQ, leading to continuously varying static as we
as dynamic critical exponents~as shown in Fig. 2!. Curi-
ously, the general scaling relations imposed by
fluctuation-dissipation theorem remain satisfied along
entire fixed line. In a similar manner, for the nonequilibriu
model C with spatiallyanisotropic, dynamical noise, we ob
tain a line of nonequilibriumstrongscaling fixed points for
n,4, i.e., even for a scalar order parameter, with an allow
interval of fixed point valuesw* , characterized again b
continuously varying scaling exponents~Figs. 4 and 5!.
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For the nonequilibrium model D with isotropic detaile
balance violation, the relaxation of the conserved noncriti
density occurs inevitably much faster than that of the a
conserved order parameter. Hence the conserved energy
sity is always able to keep up with the critical fluctuatio
and does not in turn influence the order parameter dynam
This is clearly seen in the perturbation expansion upon t
ing the limit w→` for the diffusion rate ratio of the con
served scalar density and order parameter, whereupon
terms involving the heat bath temperature ratioQ disappear.
A further rescaling of the static nonlinearityu→ũ and the
coupling constantg2→g̃2 then reduces this nonequilibrium
model D variant fully to its equilibrium counterpart.

However, introducing dynamical anisotropy, i.e., differe
effective noiseandordering temperatures in the longitudin
and transverse spatial directions in model D with conser
order parameter has a much more drastic effect, since
only the momentum space sector with weaker noise soft
As with the anisotropic nonequilibrium model B@11–13#, it
is possible to recast the emerging two-temperature mode
with its nonlinear coupling to a conserved density into
effectively equilibrium model, albeit with a Hamiltonian tha
already contains long-range correlations. The conseque
are strongly anisotropic scaling, and a reduced upper crit
dimensiondc542di . We finally remark that this feature o
the two-temperature relaxational models B and D is at v
ance with other conserved order parameter systems tha
corporatereversiblemode couplings to additional slow var
ables. Upon introducing anisotropic dynamical noise in
models J@10# and H @18#, the equilibrium integrability con-
ditions become irretrievably violated; at least to one-lo
order one cannot even find any stable RG fixed points, s
gesting that simple nonequilibrium steady states may no
sustainable in those situations.
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APPENDIX: EXPLICIT ONE-LOOP RESULTS
FOR THE VERTEX FUNCTIONS

In this appendix, we list the explicit results to one-loo
order in the perturbation expansion for the vertex functio
required for the renormalization of the parameters and c
plings of models C (a50) and D (a52). In the following
expressions the momentum integrals are given in abbrevi
notation, i.e.,*p . . . [(2p)2d*ddp . . . , and theinternal
frequency integrals have already been performed~via the
residue theorem!. We do not provide the Feynman graph
themselves, but only note the number of the contribut
one-loop diagrams for each vertex function.

For G S̃S(q,v), there are three one-loop graphs that gi
3-22



G S̃S~q,v!5lqa r 1
n12

~ ũ23g̃2!E 1
1q21g̃2~12Q!E S q

2
1pD a

a 2 2

d
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F 6 p r 1p2 p iv

l
1S q

2
1pD F r 1S q

2
1pD G1

D

l S q

2
2pD G

1 ivF 11qag̃2E
p

1

r 1S q

2
1pD 2

1

iv

l
1S q

2
1pD aF r 1S q

2
1pD 2G1

D

l S q

2
2pD 2G . ~A1!

Only one one-loop diagram contributes to each of the other three two-point functions. The resulting expressions rea

Gr̃r~q,v!5 iv1Dq2F 12
n

2
g̃2E

p

1

r 1S q

2
1pD 2

1

r 1S q

2
2pD 2

3S 12
iv/l

iv

l
1S q

2
1pD aF r 1S q

2
1pD 2G1S q

2
2pD aF r 1S q

2
2pD 2G D G , ~A2!

G S̃S̃~q,v!522l̃qaF 11qag̃2QE
p

1

r 1S q

2
1pD 2 Re

1

iv

l
1S q

2
1pD aF r 1S q

2
1pD 2G1

D

l S q

2
2pD 2G , ~A3!

Gr̃r̃~q,v!522D̃q2F 11
n

2
q2

D

l

g̃2

Q E
p

1

r 1S q

2
1pD 2

1

r 1S q

2
2pD 2

3Re
1

iv

l
1S q

2
1pD aF r 1S q

2
1pD 2G1S q

2
2pD aF r 1S q

2
2pD 2G G . ~A4!

There are three one-loop diagrams that contribute to the three-point functionGr̃SS(q,v). Here,q andv denote the wave
vector and frequency of the outgoing externalr̃ leg. The vertex function is evaluated at symmetric incoming labels2q/2 and
2v/2 for the order parameter fields. Setting the external frequencyv to zero, we obtain

Gr̃SS~q,0!5Dq2gF 12
n12

6
ũE

p

1

r 1S q

2
1pD 2

1

r 1S q

2
2pD 2

1g̃2QE
p

S q

2
1pD aS q

2
2pD a

S q

2
1pD aF r 1S q

2
1pD 2G1S q

2
2pD aF r 1S q

2
2pD 2G

3S 1

S q

2
1pD aF r 1S q

2
1pD 2G1

D

l
p2

1
1

S q

2
2pD aF r 1S q

2
2pD 2G1

D

l
p2D

12g̃2
D

l Ep

S q

2
1pD 2

r 1p2

~q1p!a

~q1p!a@r 1~q1p!2#1pa~r 1p2!

1

pa~r 1p2!1
D

l S q

2
1pD 2G . ~A5!
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In the same notation, four one-loop graphs yield

G S̃Sr~q,0!5lqagF 12
n12

3
ũE

p

S q

2
1pD a

r 1p2

1

S q

2
1pD aF r 1S q

2
1pD 2G1pa~r 1p2!

1g̃2QE
p

S q

2
1pD a

S q

2
1pD aF r 1S q

2
1pD 2G1

D

l
p2

~q1p!a

~q1p!a@r 1~q1p!2#1
D

l
p2

1g̃2
D

l Ep

~q1p!2

r 1p2

S q

2
1pD a

S q

2
1pD aF r 1S q

2
1pD 2G1pa~r 1p2!

1

pa~r 1p2!1
D

l
~q1p!2

1g̃2
D

l Ep

S q

2
2pD 2

r 1p2

S q

2
1pD a

S q

2
1pD aF r 1S q

2
1pD 2G1

D

l S q

2
2pD 2

3S 1

S q

2
1pD aF r 1S q

2
1pD 2G1pa~r 1p2!

1
1

pa~r 1p2!1
D

l S q

2
2pD 2D G . ~A6!

Finally, we need the four-point vertex functionG S̃SSS(q,0), for which there are ten one-loop Feynman diagrams. We me
record the final result forq→0; after a little algebra, one arrives at

]

]qa
G S̃SSS~q,0!uq505luF 12

n18

6
ũE

p

1

~r 1p2!2
13g̃2QE

p

pa

pa~r 1p2!1
D

l
p2 S 1

r 1p2
1

pa

pa~r 1p2!1
D

l
p2D

13g̃2
D

l Ep

p2

~r 1p2!Fpa~r 1p2!1
D

l
p2G S 2

r 1p2
1

pa

pa~r 1p2!1
D

l
p2D

23
g̃4

ũ
QE

p

pa

pa~r 1p2!1
D

l
p2
S 1

r 1p2
1

pa

pa~r 1p2!1
D

l
p2

1

D

l
p2

~r 1p2!Fpa~r 1p2!1
D

l
p2G D

23
g̃4

ũ

D

l Ep

p2

~r 1p2!Fpa~r 1p2!1
D

l
p2G S 1

r 1p2
1

pa

pa~r 1p2!1
D

l
p2

1

D

l
p2

~r 1p2!Fpa~r 1p2!1
D

l
p2G D G . ~A7!
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